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Abstract. We consider Hölder continuous GL(d,R)-valued cocycles, and more
generally linear cocycles, over an accessible volume-preserving center-bunched par-
tially hyperbolic diffeomorphism. We study the regularity of a conjugacy between
two cocycles. We establish continuity of a measurable conjugacy between any con-
stant GL(d,R)-valued cocycle and its perturbation. We deduce this from our main
technical result on continuity of a measurable conjugacy between a fiber bunched
linear cocycle and a cocycle with a certain block-triangular structure. The lat-
ter class covers constant cocycles with one Lyapunov exponent. We also establish
a result of independent interest on continuity of measurable solutions for twisted
vector-valued cohomological equations over partially hyperbolic systems. In ad-
dition, we give more general versions of earlier results on regularity of invariant
subbundles, Riemannian metrics, and conformal structures.

1. Introduction and main results

Cocycles and their cohomology play an important role in dynamics. In this paper
we consider GL(d,R)-valued cocycles, and more generally linear cocycles, over a
volume-preserving partially hyperbolic diffeomorphism f of a compact manifold M.
The prime examples are given by the differential of f and its restrictions to invariant
subbundles, for example stable, unstable, or center. Such cocycles are used in the
study of dynamics and rigidity of hyperbolic and partially hyperbolic systems.

First we discuss GL(d,R)-valued cocycles.

Definition 1.1. Let A : M → GL(d,R) be a continuous function. The GL(d,R)-
valued cocycle over f generated by A is the map A : M× Z → GL(d,R) defined as
follows: for x ∈M and n ∈ N,

A0
x = Id, An

x = A(fn−1x) ◦ · · · ◦ A(x) and A−nx = (An
f−nx)

−1.

If the tangent bundle ofM is trivial, TM =M×Rd, then the differential Df can
be viewed as a GL(d,R)-valued cocycle with A(x) = Dfx and An

x = Dfnx .

A natural equivalence relation for cocycles is defined as follows.
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Definition 1.2. Two GL(d,R)-valued cocycles A and B over f are continuously
(resp. µ-measurably, with respect to a measure µ onM) cohomologous if there exists
a continuous (resp. µ-measurable) function C :M→ GL(d,R) such that

(1.1) Bx = C(fx) ◦Ax ◦ C(x)−1 for all x ∈M (resp. µ-almost everywhere).

We refer to C as a continuous (resp. µ-measurable) conjugacy between A and B.

We consider the question whether a measurable conjugacy between two cocycles
is continuous. A positive answer was obtained by Wilkinson in [W13] for Hölder
continuous R-valued cocycles over an accessible center-bunched volume preserving
C2 partially hyperbolic diffeomorphism.

For cocycles with values in non-commutative groups, studying cohomology is more
difficult. Usually additional assumptions related to their growth are made, such as
fiber bunching. The latter means that non-conformality of the cocycle is dominated
by the expansion and contraction in the base, see Definition 2.2. The first result
on continuity of a measurable conjugacy for non-commutative cocycles over partially
hyperbolic systems was obtained in [KS16, Theorem 4.2]. It extended earlier results
for cocycles over hyperbolic diffeomorphisms [Sch99, NP99, PW01, S15]. There we
established continuity of a measurable conjugacy between Hölder continuous fiber
bunched cocycles, one of which is uniformly quasiconformal. A cocycle A is uniformly
quasiconformal if ‖An

x‖ · ‖(An
x)−1‖ is uniformly bounded in x ∈M and n ∈ Z.

In contrast to scalar cocycles, a measurable conjugacy between GL(d,R)-valued
cocycles is not always continuous, even when f is hyperbolic and both cocycles are
close to the identity. Indeed, in [PW01] Pollicott and Walkden constructed smooth
GL(2,R)-valued cocycles over an Anosov toral automorphism of the form

(1.2) Ax =

[
a(x) b(x)

0 1

]
and Bx =

[
a(x) 0

0 1

]
that are measurably (with respect to the Lebesgue measure m), but not continuously
cohomologous. We note that these cocycles have two Lyapunov exponents, 0 and∫

log a(x) dm < 0. Thus in general one can not expect continuity of a measurable
conjugacy in case of more than one Lyapunov exponent.

The next theorem gives a positive result for a constant cocycle A with one Lyapunov
exponent, which means that all eigenvalues of the matrix A generating A have the
same modulus.

Assumption 1.3. In this paper, f is an accessible center-bunched C2 partially hyper-
bolic diffeomorphism of a compact manifold M preserving a volume µ. (See Section
2.1 for details.)

Theorem 1.4. Let (f, µ) be as in Assumption 1.3. Let A be a constant GL(d,R)-
valued cocycle with one Lyapunov exponent and let B be an su-β-Hölder fiber bunched
GL(d,R)-valued cocycle over f . Then any µ-measurable conjugacy between A and B

coincides µ-a.e. with an su-β-Hölder conjugacy.
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We say that a function is su-β-Hölder if it is continuous on M and β-Hölder
continuous along the leaves of stable and unstable manifolds for f , see Section 2.3.

As a corollary of Theorem 1.4, we obtain continuity of a measurable conjugacy
between any constant GL(d,R)-valued cocycle and its perturbation, without fiber
bunching or one Lyapunov exponent assumptions on either cocycle.

Theorem 1.5. Let (f, µ) be as in Assumption 1.3. Let A be a constant GL(d,R)-
valued cocycle over f . Then for any Hölder continuous GL(d,R)-valued cocycle B

sufficiently C0 close to A, any µ-measurable conjugacy between A and B coincides
µ-a.e. with an su-Hölder conjugacy.

We deduce Theorem 1.4 from a more general result, Theorem 1.6 below. It holds
in a broader context of linear cocycles on vector bundles, see Section 2.4 for details.
Also, instead of a constant cocycle with one exponent we consider a cocycle with a
certain “block-triangular” structure. As we show in Proposition 4.5, this structure
implies that the cocycle is fiber bunched and has one Lyapunov exponent for each
f -invariant ergodic measure. For a hyperbolic f , the converse also holds by [KS13,
Theorem 3.9]. However, the converse is not known and may not hold in general in
the partially hyperbolic case, where existing results, such as [KS13, Theorem 3.4],
give a weaker structure.

We say that a linear cocycle Ã on a vector bundle Ẽ overM is uniformly bounded
if ‖Ãn

x‖ is uniformly bounded in x ∈M and n ∈ Z. This notion does not depend on
the choice of a continuous norm on Ẽ .

Theorem 1.6. Let (f, µ) be as in Assumption 1.3. Let E and E ′ be β-Hölder vector
bundles overM, or more generally su-β-Hölder subbundles of β-Hölder vector bundles
over M. Let A be an su-β-Hölder linear cocycle on E over f . Suppose that there
exist a flag of su-β-Hölder A-invariant sub-bundles

(1.3) {0} = V 0 ⊂ V 1 ⊂ · · · ⊂ V k−1 ⊂ V k = E
and a positive su-β-Hölder function ψ :M→ R so that the quotient-cocycles induced
by the cocycle ψA on V i/V i−1 are uniformly bounded for i = 1, ..., k.

Let B be an su-β-Hölder fiber bunched cocycle over f on E ′. Then any µ-measurable
conjugacy between A and B coincides µ-a.e. with an su-β-Hölder conjugacy which
intertwines their holonomies (see Definition 2.4).

This theorem extends both the partially hyperbolic result [KS16, Theorem 4.2] for
uniformly quasiconformal A and the hyperbolic result [KSW23, Theorem 2.1].

In the hyperbolic case, DeWitt recently showed in [DW] that fiber bunching of B
can be verified if B is measurably conjugate to a cocycle A taking values in a Zimmer
block. This assumption on A is weaker than in Theorem 1.4 and stronger than in
Theorem 1.6. This result strongly relies on hyperbolicity and periodic points.

One of the difficulties in the partially hyperbolic case compared to the hyperbolic
one is obtaining global regularity of conjugacies or invariant objects from (essential)



ON REGULARITY OF CONJUGACY BETWEEN LINEAR COCYCLES 4

regularity along the stable and unstable foliations. This step is simple for Hölder
regularity in the hyperbolic case due to the local product structure of the stable and
unstable foliations. To obtain continuity in the partially hyperbolic case we use re-
sults by Avila, Santamaria, and Viana [ASV13] for accessible center bunched volume
preserving f . For scalar cocycles, global Hölder continuity of the conjugacy (with
reduced Hölder exponent) was established by Wilkinson [W13]. However, accessibil-
ity is not known to yield global Hölder continuity of conjugacies or invariant objects
for GL(d,R)-valued cocycles. This creates a mismatch between Hölder input and
continuous output of the results, and hence difficulties in using them repeatedly or
inductively, as continuity is not enough to work with. We overcome these difficulties
by using holonomies and by obtaining the results with su-β-Hölder regularity for both
input and output. We also give more general versions for various earlier results under
the assumptions of su-β-Hölder regularity or existence of holonomies.

We also establish a result of independent interest on continuity of measurable
solutions for twisted vector-valued cohomological equations over partially hyperbolic
systems, Theorem 3.4, which covers the usual (untwisted) scalar and vector-valued
cocycles as particular cases. This result plays a key role in the proof of Theorem 1.6.

The paper is structured as follows. We describe the setting and introduce the
terminology in Section 2. We prove Theorem 1.6 in Section 4, and deduce Theorems
1.4 and 1.5 in Section 5. The results for twisted cohomological equations are stated
and proved in Section 3, and those on regularity of invariant subbundles, Riemannian
metrics, and conformal structures in Section 4.2.

2. Preliminaries

2.1. Partially hyperbolic diffeomorphisms.
Let M be a compact connected smooth manifold. A diffeomorphism f of M is
partially hyperbolic if there exist a Df -invariant splitting of the tangent bundle

TM = Es ⊕ Ec ⊕ Eu

with non-trivial Es and Eu, and a Riemannian metric onM for which one can choose
continuous positive functions ν < 1 < ν̂ , γ, γ̂ such that for any x ∈ M and unit
vectors vs ∈ Es(x), vc ∈ Ec(x), and vu ∈ Eu(x)

(2.1) ‖Dfx(vs)‖ < ν(x) < γ(x) < ‖Dfx(vc)‖ < γ̂(x) < ν̂(x) < ‖Dfx(vu)‖.

The sub-bundles Es, Eu, and Ec are called, respectively, stable, unstable, and center.
Es and Eu are tangent to the stable and unstable foliations W s and W u respectively.
We denote by W s

loc(x) the local stable manifold, which is the ball in W s(x) centered
at x of a sufficiently small fixed radius, in the distance distW s along the leaf.

An su-path inM is a concatenation of finitely many subpaths which lie entirely in
a single leaf of W s or W u. A partially hyperbolic diffeomorphism f is called accessible
if any two points in M can be connected by an su-path.
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We say that f is volume-preserving if it has an invariant probability measure µ in
the measure class of a volume induced by a Riemannian metric.

The diffeomorphism f is called center bunched if the functions ν, ν̂, γ, γ̂ can be
chosen to satisfy γ−1γ̂ < ν−1 and γ−1γ̂ < ν̂. This implies that nonconformality of
Df |Ec is dominated by contraction/expansion in Es/Eu.

We recall that f is hyperbolic if Ec = 0. Hyperbolic diffeomorphisms are trivially
center bunched, and accessible by the local product structure of stable and unstable
manifolds. So our results apply to hyperbolic volume-preserving diffeomorphisms.

2.2. Hölder continuous vector bundles.
We consider a d-dimensional β-Hölder, 0 < β ≤ 1, vector bundle P : E → M. This
means that there exists an open cover {Ui}ki=1 of M with coordinate systems

φi : P−1(Ui)→ Ui × Rd, φi(v) = (P (v),Φi(v))

such that every transition map φj ◦ φ−1
i is a homeomorphism and its restriction to

the fiber Φj ◦Φ−1
i |{x}×Rd depends β-Hölder continuously on x as a linear map on Rd.

We can identify E with a β-Hölder sub-bundle of a trivial bundle via

φ : E →M× Rkd with φ(v) = (P (v), ρ1Φ1(v)× ...× ρkΦk(v)),

where {ρi} is a β-Hölder partition of unity for {Ui}.
Using this embedding we equip E with the induced β-Hölder Riemannian metric,

i.e., a family of inner products on the fibers. We define an identification Ix,y of fibers
at nearby points x and y by Ix,y = Π−1

y ◦ Πx : Ex → Ey, where Πx is the orthogonal

projection in Rkd from Ex to the subspace which is the middle point of the unique
shortest geodesic between Ex and Ey in the Grassmannian of d-dimensional subspaces
of Rkd. The identifications {Ix,y} satisfy Ix,y = I−1

y,x and vary β-Hölder continuously
on a neighborhood of the diagonal in M×M.

2.3. su-β-Hölder functions.
We say that a function ψ on M with values in a metric space is s-β-Hölder if ψ is
continuous on M and β-Hölder along the leaves of the stable foliation W s, in the
sense that there exists a constant K such that

d(ψ(x), ψ(y)) ≤ K distW s(x, y)β for all x ∈M and y ∈ W s
loc(x).

We define u-β-Hölder functions similarly and say a function is su-β-Hölder if it is
s-β-Hölder and u-β-Hölder.

In the bundle setting, we similarly define the notion of an su-β-Hölder subbundle
E ′ of a β-Hölder vector bundle E by using identifications Ix,y, or equivalently using
an embedding E ′ ⊂ E ⊂ M× Rkd and thus viewing E ′x as the Grassmannian-valued
function. Using the embedding we can also define local identifications I ′x,y for E ′ as
we did for E . They are continuous on a neighborhood of the diagonal in M×M
and β-Hölder along the leaves of W s and W u in the above sense. Then for objects
on an su-β-Hölder subbundle we define the notion of being su-β-Hölder using these
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identifications. In particular, using an embedding we can obtain an su-β-Hölder
Riemannian metric on E ′.

2.4. Linear cocycles.
Let f be a diffeomorphism of M and let P : E → M be a β-Hölder vector bundle
over M. A linear cocycle over f is an automorphism of E that projects to f , that
is, a homeomorphism A : E → E such that P ◦ A = f ◦ P and for each x ∈ M
the map Ax : Ex → Efx between the fibers is a linear isomorphism. In the case of
a trivial vector bundle E = M× Rd, any linear cocycle A can be identified with a
GL(d,R)-valued cocycle generated by the function A(x) = Ax ∈ GL(d,R).

We use the following notations for the iterates of A: A0
x = Id, and for n ∈ N,

An
x = Afn−1x ◦ · · · ◦Afx ◦Ax : Ex → Efnx and

A−nx = (An
f−nx)

−1 : Ex → Ef−nx.

The prime examples of linear cocycles over f are the differential Df viewed as
an automorphism of the tangent bundle TM, and its restrictions to Df -invariant
subbundles E ′ ⊂ TM such as Es, Eu, or Ec. In these examples,

Ax = Dxf and An
x = Dxf

n, or Ax = Df |E ′(x) and An
x = Dfn|E ′(x).

Since these sub-bundles are Hölder continuous but usually not more regular, the
Hölder category is natural for applications.

A linear cocycle A is called β-Hölder if Ax depends β-Hölder continuously on x,
more precisely, if there exist a constant c such that for all nearby points x, y ∈M

(2.2) ‖Ax − I−1
fx,fy ◦Ay ◦ Ix,y‖ ≤ c · dist(x, y)β

where ‖.‖ is the operator norm. Similarly, we say that A is su-β-Hölder if it is
continuous and satisfies (2.2) for points x and y in the same local stable and unstable
leaves. This notion is also defined in the same way for a cocycle A on an su-β-Hölder
subbundle E ′ of E by using local identifications I ′x,y on E ′.

Finally, we define the notion of conjugacy between linear cocycles.

Definition 2.1. Let A and B be linear cocycles over f on vector bundles E and E ′
overM. Let L = L(E , E ′) be the bundle whose fiber Lx is the space L(Ex, E ′x) of linear
operators from Ex to E ′x. A (µ-measurable, continuous) conjugacy C between A and
B is a (µ-measurable, continuous) section of L taking values in invertible operators
and satisfying equation (1.1).

2.5. Holonomies and fiber bunching. An important role in the study of cocy-
cles, and in this paper in particular, is played by holonomies. Their existence was
established for fiber bunched cocycles.
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Definition 2.2. An su-β-Hölder linear cocycle A is called fiber bunched if there exist
constants θ < 1 and K such that for all x ∈M and n ∈ N,

(2.3) ‖An
x‖ · ‖(An

x)−1‖ · (νnx )β < K θn and ‖A−nx ‖ · ‖(A−nx )−1‖ · (ν̂−nx )β < K θn,

where ν and ν̂ are as in (2.1) and

(2.4) νnx = ν(fn−1x) · · · ν(x) and ν̂−nx = (ν̂(f−nx))−1 · · · (ν̂(f−1x))−1.

Existence of holonomies was proved for GL(d,R)-valued cocycles in [AV10, ASV13]
under a stronger fiber bunching assumption, and later extended to bundle setting in
[KS13] and to the weaker fiber bunching (2.3) in [S15]. The proofs apply to su-β-
Hölder cocycles without modifications.

Proposition 2.3. [AV10, ASV13, KS13, S15]
Let A be an su-β-Hölder linear cocycle over a partialy hyperbolic diffeomorphism
f :M→M. If A is fiber bunched, then for every x ∈M and y ∈ W s(x) the limit

(2.5) Hx,y = HA,s
x,y = lim

n→∞
(An

y )−1 ◦ Ifnx,fny ◦An
x,

called a stable holonomy of A, exists and satisfies

(H1) Hx,y is an invertible linear map from Ex to Ey;
(H2) Hx,x = Id and Hy,z ◦Hx,y = Hx,z, which implies (Hx,y)

−1 = Hy,x;

(H3) Hx,y = (An
y )−1 ◦Hfnx,fny ◦An

x for all n ∈ N;

(H4) ‖Hx,y − Ix,y ‖ ≤ c dist(x, y)β, where c is independent of x and y ∈ W s
loc(x);

(H5) The map HA,s : (x, y) 7→ HA,s
x, y , where x ∈M and y ∈ W s

loc(x), is continuous.

The unstable holonomy

HA,u
x,y = lim

n→∞
(A−ny )−1 ◦ If−nx,f−ny ◦A−nx for y ∈ W u(x)

also exists and satisfies similar properties.

By [KS13, Proposition 4.2], for a fiber bunched su-β-Hölder cocycle the map H
satisfying (H1)-(H5) is unique. It follows that the stable and unstable holonomies do
not depend on a particular choice of β-Hölder local identifications.

Definition 2.4. A conjugacy C between A and B intertwines their holonomies if

(2.6) HB, s/u
x,y = C(y) ◦HA, s/u

x,y ◦ C(x)−1 for all x, y ∈M with y ∈ W s/u(x).

3. Twisted cohomological equation

In this section, f is as in Assumptions 1.3, E is a β-Hölder vector bundle over M,
or more generally an su-β-Hölder subbundle of a β-Hölder vector bundle over M,
and F is an su-β-Hölder linear cocycle on E over f . We study the cohomological
equation over f twisted by F for sections of E . We will use the main result of this
section, Theorem 3.4, in the inductive process in the proof of Theorem 1.6.
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We say that a section ϕ :M→ E is an F-twisted coboundary over f if there exists
a section η :M→ E satisfying the following twisted cohomological equation

(3.1) ϕ(x) = η(x)− (Fx)−1(η(fx)) equivalently η(x) = ϕ(x) + (Fx)−1(η(fx)).

In Theorem 3.4 we will establish regularity of a measurable solution of (3.1) with
uniformly bounded twist F , and show its invariance under twisted holonomies, which
we introduce below.

In the case of the trivial bundle E =M×Rd and the trivial twist Fx = Id, (3.1) is
the usual vector-valued cohomological equation ϕ(x) = η(x) − η(fx). In particular,
Theorem 3.4 generalizes the usual measurable Livsic theorem for scalar cocycles in the
hyperbolic case and extends the corresponding partially hyperbolic result in [W13].

Definition 3.1. We say that a linear cocycle F : E → E is dominated if there exist
numbers θ < 1 and K such that for all x ∈M and n ∈ N,

(3.2) ‖(Fnx )−1‖ · (νnx )β < K θn and ‖(F−nx )−1‖ · (ν̂−nx )β < K θn,

where νnx and ν̂−nx are as in (2.4). We say that A is uniformly bounded if there exists
K such that ‖Fnx ‖ ≤ K for all x ∈M and n ∈ Z.

To study equation (3.1) we consider the following twisted trajectory sum for ϕ:

(3.3) Φn(x) = ϕ(x) + (Fx)−1(ϕ(fx)) + · · ·+ (Fn−1
x )−1(ϕ(fn−1x)) ∈ Ex.

Proposition 3.2. Let ϕ :M→ E be an su-β-Hölder section and let F : E → E be an
su-β-Hölder linear cocycle over f . Suppose that F is dominated and fiber bunched,
and let Hs

y,x = HF ,sy,x be the stable holonomy for F . Then the limit

Φs
y,x = ΦF ,ϕ,sx,y = lim

n→∞
(Φn(x)−Hs

y,xΦ
n(y))

exists for any x ∈M and y ∈ W s(x) and satisfies

(Φ1) Φs
y,x ∈ Ex;

(Φ2) Φs
x,x = 0 and Φs

z,x = Φs
y,x +Hs

y,x(Φ
s
z,y);

(Φ3) ‖Φs
y,x‖ ≤ K ′d(x, y)β where K ′ is independent of x ∈M and y ∈ W s

loc(x);

(Φ4) The map Φs : (x, y) 7→ Φs
y,x, where x ∈M and y ∈ W s

loc(x), is continuous.

A similar result holds for

Φu
y,x = lim

n→−∞
(Φn(x)−Hu

y,xΦ
n(y)).

Proof. Using (3.3) we expand

Φn(x)−Hs
y,xΦ

n(y) =
n−1∑
k=0

[(Fkx )−1(ϕ(fkx))−(Hs
y,x◦(Fky )−1◦Hs

fkx,fky)(H
s
fky,fkxϕ(fky))].

Since Hs
y,x ◦ (Fky )−1 ◦Hs

fkx,fky
= (Fkx )−1 by (H3), the kth term in the sum equals

(Fkx )−1(ϕ(fkx))− (Fkx )−1(Hs
fky,fkxϕ(fky)) = (Fkx )−1 [ϕ(fkx)−Hs

fky,fkxϕ(fky)].
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For all x ∈ M and y ∈ W s
loc(x) we have d(fkx, fky) ≤ νkx d(x, y) for all k ≥ 0.

Since ϕ is su-β-Hölder we have

‖ϕ(fkx)− Ifky,fkx ϕ(fky)‖ ≤ K1(νkxd(x, y))β,

and since Hs
fky,fkx

is β-Hölder close to Ifky,fkx by (H4), we conclude that

‖ϕ(fkx)−Hs
fky,fkx ϕ(fky)‖ ≤ K2(νkx d(x, y))β.

Now using the first inequality in (3.2) we estimate

‖(Fkx )−1 [ϕ(fkx)−Hs
fky,fkx ϕ(fky)] ‖ ≤ ‖(Fkx )−1‖ · ‖ϕ(fkx)−Hs

fky,fkx ϕ(fky)‖
≤ ‖(Fkx )−1‖ ·K2(νkx d(x, y))β ≤ K2Lθ

kd(x, y)β with θ < 1.

We conclude that the series
∞∑
k=0

[ (Fkx )−1(ϕ(fkx))−Hs
y,x(Fky )−1(ϕ(fky)) ] = lim

n→∞
(Φn(x)−Hs

y,xΦ
n(y))

converges uniformly over all x ∈ M and y ∈ W s
loc(x). This yields existence of Φs

y,x

and property (Φ4). Further, we can estimate

‖Φn(x)−Hs
y,xΦ

n(y)‖ ≤
n−1∑
k=0

K2Lθ
kd(x, y)β ≤ K ′d(x, y)β,

so that the limit satisfies ‖Φs
x,y‖ ≤ K ′d(x, y)β, which gives (Φ3). Property (Φ1) is

trivial and (Φ2) follows by taking the limit in

Φn(x)−Hs
z,xΦ

n(z) = (Φn(x)−Hs
y,xΦ

n(y)) + (Hs
y,xΦ

n(y)−Hs
z,xΦ

n(z)) =

= (Φn(x)−Hs
y,xΦ

n(y)) +Hs
y,x(Φ

n(y)−Hs
z,yΦ

n(z)),

where we use Hs
z,x = Hs

y,x ◦Hs
z,y. �

We now introduce twisted holonomies, which we then use to analyze regularity of
solutions of the twisted cohomological equation (3.1). These are the maps

Hs
x,y = HF ,ϕ,sx,y : Ex → Ey for y ∈ W s(x).

Proposition 3.3. Let ϕ :M→ E be an su-β-Hölder section and let F : E → E be an
su-β-Hölder linear cocycle over f . Suppose that F is dominated and fiber bunched,
and let Hs

x,y and Φs
x,y be as in Proposition 3.2. Then the maps

(3.4) Hs
x,y(v) = Hs

x,y(v) + Φs
x,y = Hs

x,y(v) + lim
n→∞

(Φn(y)−Hs
x,yΦ

n(x))

called stable twisted holonomies, exist for any x ∈M and y ∈ W s(x) and satisfy

(H1) Hx,y is an invertible affine map from Ex to Ey;
(H2) Hx,x = Id and Hy,z ◦ Hx,y = Hx,z;

(H3) The map HF ,ϕ,s : (x, y) 7→ Hs
x, y is continuous in x ∈M and y ∈ W s

loc(x).
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Proof. This follows directly from the previous proposition. For (H2) we use (Φ2):

Hy,z ◦ Hx,y(v) = Hy,z(H
s
x,y(v) + Φs

x,y) = (Hy,z ◦Hs
x,y)(v) +Hy,z(Φ

s
x,y) + Φs

y,z =

= Hs
x,z(v) + Φs

x,z = Hx,z.

�

The unstable holonomy HF ,ϕ,ux,y is defined similarly for y ∈ W u(x) and an analogous
result holds. Now we formulate and prove the main theorem of this section.

Theorem 3.4. Let (f, µ) be as in Assumption 1.3 and let E be an su-β-Hölder sub-
bundle of a β-Hölder vector bundle over M. Let F : E → E be an su-β-Hölder
uniformly bounded cocycle over f . Let ϕ :M→ E be an su-β-Hölder section, and let
η :M→ E be a µ-measurable section satisfying

ϕ(x) = η(x)− (Fx)−1(η(fx)) for µ-a.e. x.

Then, up to modification on a set of measure zero, η is su-β-Hölder and invariant
under the twisted holonomies, that is,

η(y) = HF ,ϕ,s/ux,y η(x) for all x ∈ X and y ∈ W s/u(x).

In the proof of this theorem we will use the following terminology and results from
[ASV13] for a more general bundle setting. We formulate them using our notations.

Definition 3.5. [ASV13, Definition 2.9] Let (M, f) be a partially hyperbolic system,
and let N be a continuous fiber bundle over M. A stable holonomy on N is a family
of β-Hölder homeomorphisms hsx,y : Nx → Ny with uniform β > 0, defined for all x, y
in the same stable leaf of f and satisfying

(a) hsy,z ◦ hsx,y = hsx,z and hsx,x = Id,
(b) the map (x, y, η) 7→ hsx,y(η) is continuous when (x, y) varies in the set of pairs

of points in the same local stable leaf.

Unstable holonomy is defined similarly, for pairs of points in the same unstable leaf.

Definition 3.6. [ASV13, Definition 2.10] A measurable section Ψ : M → N of
the fiber bundle N is called s-invariant if hsx,y(Ψ(x)) = Ψ(y) for every x, y in the
same stable leaf and essentially s-invariant if this relation holds restricted to some
full measure subset. The definition of u-invariance is analogous. Finally, Ψ is bi-
invariant if it is both s-invariant and u-invariant, and it is bi-essentially invariant if
it is both essentially s-invariant and essentially u-invariant.

A set in M is called bi-saturated if it consists of full stable and unstable leaves.
The term refinable for a topological space is introduced in [ASV13, Definition 2.11].
For us it suffices to note that, by the remark after this definition, every Hausdorff
space with a countable basis of topology is refinable.
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Theorem 3.7. [ASV13, Theorem D] Let f : M → M be a C2 partially hyperbolic
center bunched diffeomorphism preserving a volume µ, and let N be a continuous
fiber bundle with stable and unstable holonomies and with refinable fiber. Then,

(a) for every bi-essentially invariant section Ψ : M → N , there exists a bi-
saturated set MΨ with full measure, and a bi-invariant section Ψ̃ :MΨ → N
that coincides with Ψ at µ almost every point.

(b) if f is accessible then MΨ =M and Ψ̃ is continuous.

Now we prove Theorem 3.4.

Proof. Clearly, an su-β-Hölder uniformly bounded cocycle is both dominated and
fiber-bunched. Hence F has holonomies, and Propositions 3.2 and 3.3 yield Φs

x,y =

ΦF ,ϕ,sx,y and twisted holonomies Hs
x,y = HF ,ϕ,sx,y . Iterating (3.1) we obtain

η(x) = ϕ(x) + (Fx)−1(η(fx)) = ϕ(x) + (Fx)−1[ϕ(fx) + Ffx(η(f 2x))] = . . .

= ϕ(x) + (Fx)−1(ϕ(fx)) + · · ·+ (Fn−1
x )−1(ϕ(fn−1x)) + (Fnx )−1(η(fnx))

= Φn(x) + (Fnx )−1(η(fnx)).

Let y ∈M and x ∈ W s(y). Using the equation above for η(x) and η(y) we obtain

η(x)−Hs
y,x η(y) = Φn(x)−Hs

y,xΦ
n(y) + ∆n, where

∆n = (Fnx )−1(η(fnx))−Hs
y,x(Fny )−1(η(fny)).

By Proposition 3.2, (Φn(x)−Hs
y,xΦ

n(y)) converges to Φs
y,x.

Now we show that ‖∆n‖ → 0 along a subsequence for all x, y in a set of full measure.
First we note that by property (H3) we have Hs

y,x◦(Fny )−1 = (Fnx )−1◦Hs
fny,fnx. Hence

∆n = (Fnx )−1
(
η(fnx)−Hs

fny,fnx(η(fny))
)

= (Fnx )−1(∆′n),

where ∆′n = η(fnx)−Hs
fny,fnx(η(fny)). By uniform boundedness of F we obtain

‖∆n‖ ≤ ‖(Fnx )−1‖ · ‖∆′n‖ ≤ K‖∆′n‖.
Since the section η : M → E is µ-measurable, by Lusin’s theorem there exists a
compact set S ⊂M with µ(S) > 1/2 such that η is uniformly continuous and hence
bounded on S. Let Y be the set of points in M for which the frequency of visiting
S equals µ(S). By Birkhoff Ergodic Theorem, µ(Y ) = 1.

If x, y ∈ Y , there exists a subsequence ni → ∞ such that fnix, fniy ∈ S for all i.
Since y ∈ W s(x), d(fnix, fniy)→ 0 and hence ‖∆′ni

‖ → 0 by uniform continuity and
boundedness of η on S and property (H4) of Hs. Thus ‖∆ni

‖ → 0 and we obtain

(3.5) η(x) = Hs
y,x η(y) + Φs

y,x = Hs
y,x(η(y)) for all x, y ∈ Y with x ∈ W s(y).

This means that η is essentially s-invariant in the sense of Definition 3.6 with
N = E and hsx,y = Hs

x,y. We note that properties (H2) and (H3) of Proposition 3.3
yield Properties (a) and (b) of Definition 3.6. Also, Hs

x,y are invertible affine maps
by (H1), and hence they are Lipschitz homeomorphisms.
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A similar argument shows that η is essentially u-invariant. Thus section η is bi-
essentially invariant. Since N = E is refinable, Theorem 3.7 applies and yields that,
up to modification on a set of measure zero, η is continuous onM. Now by continuity
it follows that (3.5) holds for all x, y ∈ M with x ∈ W s(y), that is, η is s-invariant.
Further, since Φs

x,y and Hs
x,y are β-Hölder on W s

loc(x) by (Φ3) and (H4) respectively,
(3.5) yields that

‖η(x)− Iy,xη(y)‖ ≤ ‖(Hs
y,x − Iy,x)η(y)‖+ ‖Φs

y,x‖ ≤ K ′‖η(y)‖ d(x, y)β

for all x, y ∈ M with x ∈ W s
loc(y). Since η is continuous on M, and hence bounded,

this means that η is s-β-Hölder. A similar argument shows that η is u-β-Hölder.
This completes the proof of Theorem 3.4. �

4. Proof of Theorem 1.6

4.1. Continuity of measurable conjugacy in uniformly quasiconformal case.
An important ingredient in the proof of Theorem 1.6 is the following result, which
extends [KS16, Theorem 4.2]. We recall that a cocycle A is uniformly quasiconformal
if ‖An

x‖ · ‖(An
x)−1‖ is uniformly bounded in x ∈M and n ∈ Z.

Theorem 4.1. Let (f, µ) be as in Assumption 1.3.

(i) Continuous version. Let E and E ′ be continuous vector bundles overM, and let
A and B be continuous linear cocycles over f on E and E ′ respectively. Suppose that
A and B have stable and unstable holonomies satisfying (H1,2,3,5) of Proposition 2.3,
and A is uniformly quasiconformal. Then any µ-measurable conjugacy between A and
B coincides on a set of full measure with a continuous conjugacy which intertwines
the holonomies of A and B.

(ii) su-Hölder version. Let E and E ′ be su-β-Hölder subbundles of β-Hölder vector
bundles overM. Let A be a uniformly quasiconformal su-β-Hölder linear cocycle over
f on E. Let B be an su-β-Hölder fiber bunched linear cocycle over f on E ′ or, more
generally, a continuous linear cocycle with holonomies as in Proposition 2.3. Then
any µ-measurable conjugacy between A and B coincides on a set of full measure with
an su-β-Hölder conjugacy.

Proof. Recall that L = L(E , E ′) is the vector bundle with fiber Lx = L(Ex, E ′x). Let
C be a µ-measurable conjugacy between A and B, that is, a µ-measurable section of
L taking values in invertible linear operators and satisfying

Bx = C(fx) ◦Ax ◦ C(x)−1 for µ almost every x.

The main part of the proof is showing that C intertwines the stable holonomies of A
and B on a set of full measure.

Since C is µ-measurable and the bundle L has countable basis of topology, by
Lusin’s theorem there exists a compact set S ⊂ M with µ(S) > 1/2 such that C is
uniformly continuous on S. Let Y be the set of points inM for which the frequency
of visiting S equals µ(S). By Birkhoff ergodic theorem, µ(Y ) = 1.
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Suppose that x, y ∈ Y and y ∈ W s(x). Then
(4.1)

(Bn
y )−1 ◦ Ifnxfny ◦Bn

x =

=
(
C(fny) ◦An

y ◦ C(y)−1
)−1 ◦ Ifnx,fny ◦ C(fnx) ◦An

x ◦ C(x)−1

= C(y) ◦ (An
y )−1 ◦ C(fny)−1 ◦ Ifnx,fny ◦ C(fnx) ◦An

x ◦ C(x)−1

= C(y) ◦ (An
y )−1 ◦ (Ifnx,fny + ∆n) ◦An

x ◦ C(x)−1

= C(y) ◦ (An
y )−1 ◦ Ifnx,fny ◦An

x ◦ C(x)−1 + C(y) ◦ (An
y )−1 ◦∆n ◦An

x ◦ C(x)−1.

We will show that the last term tends to 0 along a subsequence {ni} such that
fnix, fniy ∈ S for all i. Since x, y ∈ Y , such a subsequence exists by the choice of Y .
First we note that for the map

∆n = C(fny)−1 ◦ Ifnx,fny ◦ C(fnx)− Ifnx,fny : Efnx → Efny
we have ‖∆ni

‖ → 0 as i→∞ since dist(fnix, fniy)→ 0 for y ∈ W s(x). This follows
from uniform continuity of C on the compact set S.

Since the norms of stable holonomies are uniformly bounded over pairs of points
in local stable leaves, and since A is uniformly quasiconformal, we obtain

‖(An
y )−1‖ · ‖An

x‖ ≤ ‖(An
y )−1‖ · ‖HA,s

fny,fnx‖ · ‖A
n
y‖ · ‖HA,s

x,y ‖ ≤
‖(An

y )−1‖ ·K1‖An
y‖ ≤ K1K2 for all x ∈M and y ∈ W s

loc(x).

Now it follows that

‖C(y) ◦ (Ani
y )−1 ◦∆ni

◦Ani
x ◦ C(x)−1‖ ≤ K1K2 ‖∆ni

‖ → 0 as i→∞.
Passing to the limit in (4.1) along the sequence ni we obtain that C intertwines the
stable holonomies HA,s and HB,s on a set of full measure:

(4.2) HB,s
x,y = C(y) ◦HA,s

x,y ◦ C(x)−1 for all x, y ∈ Y such that y ∈ W s(x).

or equivalently

(4.3) C(y) = HA,s
x,y ◦ C(x) ◦ (HB,s

x,y )−1 for all x, y ∈ Y such that y ∈ W s(x).

Similarly, we obtain that C intertwines the unstable holonomies HA,u and HB,u on a
set of full measure. Together these imply that C is a bi-essentially invariant section,
in the sense of Definition 3.6, of the bundle N = L with stable holonomy maps
hsx,y : Lx → Ly defined as

hsx,y(C) = HA,s
x,y ◦ C ◦ (HB,s

x,y )−1

and similarly defined unstable holonomies. Properties (H2) and (H5) of Proposition
2.3 imply that these holonomies satisfy Properties (a) and (b) of Definition 3.5. Also,
the maps hsx,y are invertible linear and hence are Lipschitz homeomorphisms. Since
the space Lx = L(Ex, E ′x) is Hausdorff with a countable basis of topology, it is refinable
and thus Theorem 3.7 applies and yields that, up to modification on a set of measure
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zero, C is continuous onM. Now (4.2) shows that C intertwines the holonomies of A
and B everywhere on M. This completes the proof of the first part of the theorem.

In the second part, since A is su-β-Hölder, uniform quasiconformality gives fiber
bunching, and hence existence of holonomies by Proposition 2.3. The cocycle B

also has holonomies by Proposition 2.3 or by the assumption. Thus the first part
applies and yields that the conjugacy C is continuous and intertwines the holonomies
of A and B. The latter means that (4.3) holds everywhere, and it follows that C
is s-β-Hölder. Indeed, Proposition 2.3 (H4) gives β-Hölder continuity of HA,s and
HB,s along W s, which yields that of C. Similarly, C is also u-β-Hölder and thus
su-β-Hölder. �

4.2. Regularity results for measurable invariant structures.
In this section we give more general versions of earlier results on regularity of measur-
able invariant subbundles, Riemannian metrics, and conformal structures for linear
cocycles. We will use these results in the proof of Theorem 1.6

We denote by λ+(A, µ) and λ−(A, µ) the largest and smallest Lyapunov exponents
of a linear cocycle A with respect to µ, given by the Oseledets Multiplicative Ergodic
Theorem. For µ almost all x ∈M, they equal to the following limits

(4.4) λ+(A, µ) = lim
n→∞

n−1 ln ‖An
x‖ and λ−(A, µ) = lim

n→∞
n−1 ln ‖(An

x)−1‖−1.

A cocycle A has one exponent with respect to µ if λ+(A, µ) = λ−(A, µ). We note
that a cocycle with more than one Lyapunov exponent may have measurable invariant
sub-bundles which are not continuous. In particular, the Lyapunov sub-bundle for the
negative Lyapunov exponent of cocycle A as in (1.2) is measurable but not continuous,
see [S13, Example 2.9]. In contrast, for cocycles with one Lyapunov exponent we have

Theorem 4.2. Let (f, µ) be as in Assumptions 1.3, let E be an su-β-Hölder subbundle
of a β-Hölder vector bundle over M, and let B be a fiber bunched su-β-Hölder linear
cocycle over f on E. If λ+(B, µ) = λ−(B, µ) then any µ-measurable B-invariant
subbundle E ′ of E coincides µ-a.e. with an su-β-Hölder sub-bundle invariant under
B and under its holonomies.

This is essentially [KS13, Theorem 3.3] with β-Hölder assumption on B weakened
to su-β-Hölder and continuity of E ′ improved to su-β-Hölder in the conclusion.

Proof. The proof of Theorem 3.3 in [KS13] goes through essentially without change
as it relies on Theorem C in [ASV13] to show holonomy invariance and continuity
of E ′. Theorem C in [ASV13] requires only λ+(B, µ) = λ−(B, µ), continuity of B,
and existence of holonomies, for which it suffices to have B fiber bunched and su-
β-Hölder. Then holonomy invariance of E ′ and Hölder property (H4) of holonomies
along W s and W u yield that E ′ is su-β-Hölder. �

Theorem 4.3. Let (f, µ) be as in Assumptions 1.3 and let E be an su-β-Hölder
subbundle of a β-Hölder vector bundle over M. Let B be either a fiber bunched
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su-β-Hölder linear cocycle over f on E, or, more generally, a continuous linear co-
cycle with holonomies as in Proposition 2.3. Then any B-invariant µ-measurable
Riemannian metric (resp. conformal structure) on E coincides µ-a.e. with an su-β-
Hölder Riemannian metric (resp. conformal structure) invariant under B and under
its holonomies.

We recall that the space T of inner products on Rd identifies with the space of real
symmetric positive definite d×d matrices, which is isomorphic to GL(d,R)/SO(d,R).
The group GL(d,R) acts transitively on T via A[D] = ATDA, where A ∈ GL(d,R)
and D ∈ T . The space T is a Riemannian symmetric space of non-positive cur-
vature when equipped with a certain GL(d,R)-invariant metric [La, Ch. XII, The-
orem 1.2]. A conformal structure on Rd, d ≥ 2, is a class of proportional inner
products. The space of conformal structures on Rd can be similarly identified with
SL(d,R)/SO(d,R), which is also a Riemannian symmetric space of non-positive cur-
vature with a GL(d,R)-invariant metric. A Riemannian metric (resp. conformal
structure) on a vector bundle E is a section of the corresponding bundle whose fiber
at x is the space of inner products (resp. conformal structures) on Ex. See [KS10] for
more details.

Proof of Theorem 4.3. For a fiber bunched β-Hölder cocycle, global continuity of an
invariant µ-measurable conformal structure was established in [KS13, Theorem 3.1].
The main step, [KS13, Proposition 4.4], proves essential holonomy invariance of the
conformal structure. Fiber bunching and β-Hölder continuity are used only to obtain
holonomies, and thus they can be replaced by assuming existence of holonomies or by
fiber bunching and the su-β-Hölder property, which imply it. The global continuity
and holonomy invariance, together with the Hölder property (H4) of holonomies along
W s and W u, yield that the conformal structure is su-β-Hölder. This completes the
proof in the conformal structure case.

The proof for a Riemannian metric is almost identical, using the space of inner
products in place of the space of conformal structures, which have the same properties
for the purpose of the proof, described above. Alternatively, the result can be deduced
by obtaining an invariant conformal structure using the previous case, and then using
boundedness of the cocycle to find a proper normalization. �

Corollary 4.4. Let (f, µ) be as in Assumptions 1.3 and let E be an su-β-Hölder sub-
bundle of a β-Hölder vector bundle overM. Suppose that B is either an su-β-Hölder
linear cocycle or a continuous linear cocycle with holonomies as in Proposition 2.3.
If B is uniformly bounded (resp. uniformly quasiconformal) then B preserves an su-
β-Hölder invariant Riemannian metric (resp. conformal structure) on E invariant
under the holonomies of B.

Proof. We note that for an su-β-Hölder cocycle both uniform boundedness and uni-
form quasiconformality imply fiber bunching and give existence of holonomies. Thus
B has holonomies and by the previous theorem it suffices to obtain an invariant
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measurable Riemannian metric (resp. conformal structure) on E . In the case of
a conformal structure, [KS10, Proposition 2.4] shows that any uniformly quasicon-
formal continuous linear cocycle (over any diffeomorphism f) preserves a bounded
Borel measurable conformal structure. The same result holds in the case of a Rie-
mannian metric for uniformly bounded cocycles, and argument carries over without
changes. �

4.3. Proof of Theorem 1.6.
We consider the invariant flag (1.3) for A assumed in the theorem,

{0} = V 0 ⊂ V 1 ⊂ · · · ⊂ V k−1 ⊂ V k = E , and the quotient-bundles Ũ i = V i/V i−1.

We fix a background su-β-Hölder Riemannian metric g on E . Then for i = 1, . . . , k,
the orthogonal complement of V i−1 in V i is an su-β-Hölder subbundle of E , which
we denote by U i. Then we have V i = U1 ⊕ · · · ⊕ U i, but in general only U1 = V 1 is
A-invariant while U i with i > 1 are not.

We use the splitting E = U1 ⊕ · · · ⊕ Uk to define a block triangular structure for
A. We denote by P j : E → U j the projection to the U j component in this splitting,
and define the blocks Aj,i : U i → U j as Aj,i = P j ◦ A|U i . The invariance of the flag
implies that Aj,i = 0 for j > i.

The projection P i|V i induces a continuous bundle isomorphism between U i and the
quotient Ũ i. Here we use continuous category for quotient bundles and structures on
them, since the su-β-Hölder regularity was defined only for subbundles. However, us-
ing this isomorphism we identify the quotient cocycle Ã(i) on Ũ i with a linear cocycle

A(i) on the su-β-Hölder subbundle U i. The cocycle A(i) is also su-β-Hölder, as A
(i)
x

coincides with the block Ai,i
x . By continuity of the isomorphism, since ψÃ(i) is uni-

formly bounded by the assumption, so is the cocycle ψA(i). Now Corollary 4.4 yields
that ψA(i) preserves an su-β-Hölder Riemannian metric σi on U i. By isomorphism,
the quotient ψÃ(i) also preserves a continuous Riemannian metric σ̃i on Ũ i.

Proposition 4.5. Let A and k be as in Theorem 1.6. Then there exists a constant
c such that for all x ∈M and 0 6= n ∈ Z,

‖(ψA)nx‖ ≤ c|n|k−1 and ‖An
x‖ · ‖(An

x)−1‖ ≤ c|n|2(k−1).

In particular, A has one Lyapunov exponent for each f -invariant ergodic measure ν,
that is λ+(A, ν) = λ−(A, ν).

Proof. This follows from the proof of [KS13, Theorem 3.10] which uses only the
invariant flag (1.3) with continuous invariant Riemannian metrics on the quotients.
The last statement follows from the second inequality since

λ+(A, ν)− λ−(A, ν) = lim
n→∞

n−1 ln(‖An
x‖ · ‖(An

x)−1‖) for ν a.e. x. �

Since we have λ+(A, µ) = λ−(A, µ) and B is µ-measurably conjugate to A, we also
have λ+(B, µ) = λ−(B, µ). This follows from an easy lemma:
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Lemma 4.6. [KSW23, Lemma 4.4] Let µ be an ergodic f -invariant measure. If C is
a µ-measurable conjugacy between cocycles A and B, then for µ a.e. x and for each
vector 0 6= u ∈ Ex the forward (resp. backward) Lyapunov exponent of u under A

equals that of C(x)u under B.

Now we construct the corresponding flag structure for B. Denoting V ix = C(x)V i
x

we obtain the corresponding flag of measurable B-invariant sub-bundles

{0} = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk = E ′.

Since λ+(B, µ) = λ−(B, µ), and since B is su-β-Hölder and fiber bunched by the
assumption, Theorem 4.2 yields that this flag for B is su-β-Hölder.

Similarly to the case of A, for each i = 1, ..., k, we define the corresponding objects
for B: the continuous quotient bundle Ũ i = V i/V i−1 with the induced quotient

cocycle B̃(i); the orthogonal complement U i of V i−1 in V i with respect to an su-β-
Hölder background Riemannian metric g′ on E ′; the projection P i : E → U i for the
su-β-Hölder splitting E ′ = U1 ⊕ · · · ⊕ Uk; su-β-Hölder blocks Bj,i = Pj ◦ B|U i with
triangular structure Bj,i = 0 for j > i; and the su-β-Hölder cocycle B(i) on U i with

B
(i)
x = Bi,i

x that is continuously isomorphic to the quotient cocycle B̃(i).
We note that C does not necessarily map U i to U i for i > 1. We denote the

restriction of C to U i by Ci and define the blocks by Cj,i = Pj ◦Ci : U i → U j. Since
V ix = C(x)V i

x , we have Ci(U i) ⊂ V i and thus Cj,i = 0 for j > i, so that C also has
the block triangular structure.

First we show that the diagonal blocks Ci,i : U i → U j are su-β-Hölder, for i =
1, . . . , k. For this we note that Ci,i gives a measurable conjugacy between su-β-Hölder
cocycles A(i) on U i and B(i) on U j. Recall that A(i) is conformal with respect to metric
σi. The cocycle B(i) has holonomies as in Proposition 2.3 induced, via the quotient,
by the holonomies of the cocycle B, which is su-β-Hölder and fiber bunched by the
assumption. Now part (ii) of Theorem 4.1 shows that Ci,i is su-β-Hölder. Also,
pushing the metric σi by Ci,i to U j we obtain a Riemannian metric τi for which B(i)

is conformal and ψB(i) is isometric.
We will now show inductively that the restriction of C to V i is su-β-Hölder for i =

1, . . . , k. The base case i = 1 follows from the previous paragraph since C|V 1 = C1,1.
Now we describe the inductive step. Assuming that the restriction of C to V i−1 is

su-β-Hölder we show that so is the restriction to V i. Since V i = U i⊕V i−1, it suffices
to show that the restriction Ci of C to U i is also su-β-Hölder. We establish this for
its components Cj,i, j = i, . . . , 1, by induction. In the base case j = i we already
know that the diagonal block Ci,i is su-β-Hölder.

Now we show that Ci−`,i, with 0 < ` < i, is su-β Hölder assuming that Ci−j,i is
su-β-Hölder for j = 0, 1, . . . `− 1. Using the conjugacy equation

Bx ◦ Cx = Cfx ◦Ax
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and equating the (i− `, i) components we obtain

Bi−`,i−`
x ◦ Ci−`,i

x + Bi−`,i−`+1
x ◦ Ci−`+1,i

x + · · ·+ Bi−`,i
x ◦ Ci,i

x

= Ci−`,i−`
fx ◦Ai−`,i

x + Ci−`,i−`+1
fx ◦Ai−`+1,i

x + · · ·+ Ci−`,i
fx ◦Ai,i

x

and hence

(4.5) Ci−`,i
x = (Bi−`,i−`

x )−1 ◦ Ci−`,i
fx ◦Ai,i

x +Dx

where

Dx = (Bi−`,i−`
x )−1 ◦ (Ci−`,i−`

fx ◦Ai−`,i
x + · · ·+ Ci−`,i−1

fx ◦Ai−1,i
x )

− (Bi−`,i−`
x )−1 ◦ (Bi−`,i−`+1

x ◦ Ci−`+1,i
x + · · ·+ Bi−`,i

x ◦ Ci,i
x ).

Then equation (4.5) is of the form (3.1) with

ϕx = Dx, ηx = Ci−`,i
x , and Fx(ηx) = Bi−`,i−`

x ◦ ηx ◦ (Ai,i
x )−1,

where we view Ci−`,i
x and Dx as sections of the bundle L(U i,U i−`) whose fiber at

x is the space L(U i
x,U i−`x ) of linear maps from U i

x to U i−`x . This is a subbundle of
the β-Hölder bundle L = L(E , E ′), where we view L(U i

x,U i−`x ) as the subspace of
those operators in L(Ex, E ′x) for which all other blocks, with respect to the splittings
Ex = ⊕U i

x and E ′x = ⊕U ix, are zeros. Since the splittings are su-β-Hölder, so is the
subbundle L(U i,U i−`). We also have that Dx is su-β-Hölder since we inductively
know that all its terms are su-β-Hölder. Indeed, for the second term this follows
from the assumption that Ci−j,i is su-β-Hölder for j = 0, 1, . . . `− 1, and for the first
term this follows from the assumption that the restriction of C to V i−1 is su-β-Hölder
and hence so are all blocks Ci−`,m with m ≤ i − 1. The linear cocycle F over f on
the bundle L(U i,U i−`) is su-β-Hölder since so are Bi−`,i−` and Ai,i. Moreover, F is
uniformly bounded since the cocycles ψBi−`,i−` and ψAi,i are isometric respect to σi
and τi and hence

‖Fx(ηfx)‖ ≤ ‖ψBi−`,i−`
x ‖ · ‖ηfx‖ · ‖(ψAi,i

x )−1‖ = ‖ηfx‖.
Thus we can apply Theorem 3.4 and conclude that Ci−`,i is su-β-Hölder.

The argument above applies to ` = 1, . . . , i−1 and we conclude that all C1,i, . . . , Ci,i

are su-β-Hölder. We also recall that Cj,i = 0 for j > i, and thus the restriction Ci

of C to U i is also su-β-Hölder. This proves that so is the restriction of C to V i and
completes the inductive step. We conclude that C is su-β-Hölder, completing the
proof of Theorem 1.6.

5. Proofs of Theorems 1.4 and 1.5

5.1. Proof of Theorem 1.4. Let A be the matrix generating cocycle A in Theorem
1.4. The one exponent assumption means that all eigenvalues of A have the same
modulus ρ. Then the real Jordan canonical form of matrix ρ−1A has block triangular
structure with orthogonal bocks on the diagonal. This yields the corresponding flag
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of invariant subbundles for the cocycle A with properties as in Theorem 1.6. Hence
Theorem 1.6 implies Theorem 1.4.

5.2. Proof of Theorem 1.5. Now we deduce Theorem 1.5 from Theorem 1.4. Let
A be the matrix generating the cocycle A and let ρ1 < · · · < ρ` be the distinct moduli
of its eigenvalues. We consider the corresponding invariant splitting

(5.1) Rd = E1 ⊕ · · · ⊕ E`,

where Ei denotes the sum of the generalized eigenspaces of A corresponding to the
eigenvalues of modulus ρi. This gives a splitting of the trivial bundle E = M× Rd

into A-invariant constant subbundles Ei. For any ε > 0 there is a suitable norm on
Rd with resect to which we have

(5.2) (ρi − ε)n ≤ ‖Anu‖ ≤ (ρi + ε)n for any unit vector u ∈ Ei and n ∈ Z.

Let B(x) = Bx : M → GL(d,R) be the generator of the cocycle B. If B is
sufficiently C0 close to A, then E = M× Rd has a continuous B-invariant splitting
C0 close to (5.1),

Rd = E1
x ⊕ · · · ⊕ E `x,

for which estimates similar to (5.2) hold,

(ρi − 2ε)n ≤ ‖Bnu‖ ≤ (ρi + 2ε)n for any unit vector u ∈ E i and n ∈ Z.

Moreover, for a Hölder B it is well known that the splitting is also Hölder with some
exponent β > 0, which may be smaller than that of B. See for example [KSW23,
Lemma 5.1], which gives estimates for β in terms of ρi and f . We conclude that all
restrictions Bi = B|Ei are β-Hölder and hence are fiber bunched if ε is sufficiently
small.

Let C be a measurable conjugacy between A and B. We claim that C maps Ei

to E i, that is, Cx(E
i) = E ix for µ a.e. x. Indeed, by Lemma 4.6, for µ a.e. x and for

each unit vector u ∈ Ei
x the forward and backward Lyapunov exponent of Cx(u) is

ln ρi. This yields that Cx(u) ∈ E i, as having a non-zero component in another E j
would imply having forward or backward Lyapunov exponent under B different from
ln ρi if ε is sufficiently small. Then Ci = C|Ei is a measurable conjugacy between
the constant cocycle Ai = A|Ei with one Lyapunov exponent and the β-Hölder fiber
bunched cocycle Bi. By Theorem 1.4 each Ci, i = 1, . . . , `, is su-β-Hölder and hence
so is C. This completes the proof of Theorem 1.5.
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