RIGIDITY OF STRONG AND WEAK FOLIATIONS
BORIS KALININ! AND VICTORIA SADOVSKAYA?

ABSTRACT. We consider a perturbation f of a hyperbolic toral automorphism L.
We study rigidity related to exceptional properties of the strong and weak stable
foliations for f. If the strong foliation is mapped to the linear one by the conjugacy h
between f and L, we obtain smoothness of h along the weak foliation and regularity
of the joint foliation of the strong and unstable foliations. We also establish a similar
global result. If the weak foliation is sufficiently regular, we obtain smoothness of the
conjugacy along the strong foliation and regularity of the joint foliation of the weak
and unstable foliations. If both conditions hold then we get smoothness of h along
the stable foliation. We also deduce a rigidity result for the symplectic case. The
main theorems are obtained in a unified way using our new result on relation between
holonomes and normal forms.

1. INTRODUCTION

In this paper we consider a perturbation f of a hyperbolic toral automorphism L. We
study rigidity related to exceptional properties of the strong and weak stable foliations
for f. We recall that an automorphism L of T¢ is hyperbolic if the matrix has no
eigenvalues on modulus 1. We denote its stable and unstable subspaces by £® and E".

Let f be a O diffeomorphism of T¢ which is C* close to L. Then f is an Anosov
diffeomorphism, i.e., the tangent bundle of T? splits into a D f-invariant direct sum of
the stable and unstable subbundles £° and £, where

IDflell <1 and DS o] < 1
for some Riemannian metric. Also, f is conjugate to L by a homeomorphism 5, i.e.,
hof=Loh.

The conjugacy close to the identity is unique, and it is bi-Holder but usually not C*.
Any two conjugacies differ by an affine automorphism of T¢ commuting with L, and
hence they have the same regularity.

We denote the stable and unstable foliations for L by W* and W*, and for f by W?*
and W*. The foliations W?® and W* have uniformly C'* leaves, but they are not even
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C! foliations in general. A foliation is C" if it has C" local foliation charts. We say that
the leaves are uniformly C” if locally they can be C" embedded with the embeddings
varying continuously in the C" topology. For a foliation W with uniformly C” leaves,
we say that a function on T¢ is uniformly C" along W if locally its restrictions to the
leaves are C" and vary continuously in the C” topology, see Section [4] for more details
and noninteger r.

We recall that the Lyapunov space for an exponent x of L is the sum of generalized
eigenspaces of all eigenvalues of L with modulus eX. If L has more than one stable
Lyapunov exponent, one can take a dominated splitting E° = E* @& E"* into strong
and weak parts by combining one or more Lyapunov spaces into each part. Since f
is C* close to L, its stable subbundle also has the corresponding dominated splitting
C%-close to that of L:

(1.1) £5 = E% @ &,

The bundle £*° is integrable to the strong foliation W?*, which has uniformly C*
leaves and is a C'™ subfoliation of the leaves of W?*. The bundle £"* is also integrable
to the weak foliation W™? | but in general even the leaves of W*? are only uniformly
CHHHelder YWe always have h(W?) = W* and h(W™*) = W¥* by [GOS], but usually not
h(W?#*) = W*°. Our main goal is to explore what rigidity properties follow if assume
that h(W?**) = W** or that W™ is sufficiently regular.

Let h be the conjugacy between L and f close to the identity. Then it can be written
as h(z) = x + A(z), where A : T¢ — R?. We will consider the components A* of A,
where x = u, s, ss, ws, with respect to the splittings

Rd:Eu@Es:Eu@ESS@EwS.
We will also write h*(z) = z* + A*(z), which can be defined globally for the lift of h

to the universal cover R, or locally on T¢. Thus the regularity of h* is well-defined.
First we consider the rigidity of a strong foliation.

Theorem 1.1 (Rigidity of a strong foliation). Let L be a hyperbolic automorphism of
T with dense leaves of W**. Let f be a C* diffeomorphism sufficiently C* close to L,
and let h be a topological conjugacy between f and L. Then for the statements below
we have

1) &= 2) = B) = (6) = &)

Moreover, if the leaves of each of the Lyapunov subfoliations of W™ are dense in T¢,
then the five statements are equivalent.

(1) hOW®) = W*s,
(2) WY and W** are jointly integrable to a foliation W"t5s,

(3) (2) holds and the foliation W"*** is conjugate to the linear foliation W*" @ W**
by a C% diffeomorphism of T¢,
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(4) h is a C' diffeomorphism along the leaves of W™, and
the derivative D(h|yws(y)) : €25 — R is Holder continuous on T,

(5) h*s is C™ on T¢, and if the leaves of W¥* are uniformly C4,
then h 1s a uniformly C9 diffeomorphism along W*?.

In Section [2.1|we give basic examples of perturbations f satisfying the assumptions of
Theorem 1.1}, illustrating the regularity we obtain and necessity of the extra assumption
for the implications (4) = (5) and (4) = (1). Similar examples for subsequent
theorems are also included. Our results essentially recover the main features of the
basic models.

Remark 1.2 (Irreducibility conditions). A matriz L € SL(d,Z) is called irreducible
if it has no nontrivial rational invariant subspaces or, equivalently, if its character-
istic polynomial 1s irreducible over Q. If L s irreducible, or more generally, weakly
wrreducible, then all Lyapunov foliations for L have dense leaves, and hence the five
statements in Theorem[1.1] are equivalent. We define and discuss weak irreducibility in

Section [2.3.

Joint integrability of W* and W?*° plays an important role in the study of ergodic
properties of foliation W?*, and it is also related to the Lyapunov exponents on £%.
It has been extensively studied, primarily on T3, see e.g. [ALOS, [ACEPW] [DR24,
GaSh20]. In higher dimensions, its relation to rigidity was considered by Gogolev and
Shi in [GSh23]. They proved that (1) <= (2) in general, and that (2) <= (4) under
the assumption that L is irreducible and has at most two-dimensional Lyapunov spaces.
Our assumptions on L are considerably weaker and we obtain stronger conclusions (3)
and (5). Our approach is completely different, it yields higher smoothness directly, and
does not rely on [GSh23] aside from (1) <= (2). Our techniques are mostly global,
but require narrow spectrum of D f|ews to use normal forms.

Combining our techniques with the spectral rigidity for D f|gws obtained in [GSh23]
we obtain the following global version of Theorem [I.Il The bunching assumption
in the theorem means that nonconformality of Df on £“¢ is dominated by the
expansion on &%, and is trivially satisfied if dim&*® = 1. A splitting €% = £%° @ £V
is called absolutely dominated if there exists 0 < p < 1 such that with respect to some
continuous family of Riemannian norms on £° we have

|IDf(uw)]| < p<||Df(v)|| for all unit vectors u € £%° and v € £"°.
This condition automatically holds in the setting of Theorem [1.1]

Theorem 1.3 (Global rigidity of a strong foliation). Let L be an irreducible hyperbolic
automorphism of T¢ and let f be a C™ Anosov diffeomorphism of T¢ conjugate to L
by a homeomorphism h. Suppose that f has an absolutely dominated splitting £% =
E* @ E™ and satisfies the bunching condition

(12) (D flewsioll - 1(DFlews) - 1D Flewie) Il < 1 for all z € T



RIGIDITY OF STRONG AND WEAK FOLIATIONS 4

Then the statements (1), (2), (3'), (4), (5) are equivalent, where (1), (2), (4), (5) are
as in Theorem[1.1] and (3') is

(3") WY and W** are jointly integrable to a C* foliation VW55
whose holonomies preserve a Holder continuous Riemannian metric on EV°.

Our approach also allows us to obtain rigidity related to regularity of the weak
foliation. We recall that A(WW™**) = W™* and hence W" and W™ are jointly integrable
to the foliation Wu+ws = =1 (W* @ W™*) with uniformly C*THOder Jeaves.

Let r4s(L) be the ratio of the top and bottom Lyapunov exponents of L on E** i.e.,

(1.3) Tss(L) = (108 pmin)/ (108 pmax) > 1,

where 0 < ppin < pmax < 1 are the smallest and the largest moduli of the eigenvalues
of L on E*.

Theorem 1.4 (Rigidity of a weak foliation). Let L be a hyperbolic automorphism of
T with dense leaves of W¥*. Let f be a C™ diffeomorphism sufficiently C' close to
L, and let h be a topological conjugacy between f and L. If r > ry(L) and r ¢ N, then
the following are equivalent.

(1) W™ is a uniformly C" subfoliation of W?*,
(2) h** is a uniformly C> diffeomorphism along W**, and h* is C" on T¢,

(3) The joint foliation W5 is conjugate to the linear foliation W* & W™s by a
C" diffeomorphism.

If in addition h(W?**) = W, then (1,2,3) = h is uniformly C'*° along W?**.

This theorem follows from a more general technical result, Theorem [7.1} where we
assume only regularity of the holonomies of W** between the leaves of W*°  rather
than regularity of the subfoliation. The distinction is not assuming higher regularity
of the leaves of W**, which in general are only C+Holder,

Combining rigidity of the weak and strong subfoliations, Theorems [1.1] and [I.4] we
obtain the following characterizations of smoothness of the conjugacy along W?*.

Theorem 1.5 (Rigidity of strong and weak foliations). Let L be a hyperbolic auto-
morphism of T¢. Suppose that W and W** have dense leaves. Let f be a C™
diffeomorphism sufficiently C* close to L, and let h be a topological conjugacy between
f and L. Then the following are equivalent.

(1) h(W?**) = W** and W*™* is a uniformly C> subfoliation of WW?*,

(2) h a is uniformly C* diffeomorphism along W?,

(2) h* is in C(T?) and a diffeomorphism along W?,

(3) W is conjugate to the linear foliation W* by a C'* diffeomorphism.
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Symplectic case. Now we apply the above results to obtain rigidity results for sym-
plectic L and f.
Let L be a symplectic hyperbolic automorphism of T¢ with dominated splittings

(1.4) E°=E*®E" and E* = E"™ @& E"

such that dim £** = dim £** and hence dim £** = dim £*". Here E"* and E™" are
strong and weak unstable subbundles. Let f be a C! small perturbation of L. Then f
has corresponding dominated splittings

gs — 885 @ ng and gu — guu @ gwu.
The subbundle £¥t%% is integrable with C1HHOder Jeaves and h(Wwstwy) = Jywstwu,

Theorem 1.6 (Symplectic rigidity). Let L be a symplectic hyperbolic automorphism
of T¢. Suppose that the foliations W, W*5, W™ and W have dense leaves. Let
f be a C> diffeomorphism sufficiently C* close to L and preserving a C™ symplectic
form. Let h be a topological conjugacy between f and L. Then for the statements below
we have

(1) = (2) = 3) = 4.

Moreover, if the leaves of each of the Lyapunov subfoliations of WSt qre dense in
T¢, then the four statements are equivalent.

(1) his a C* diffeomorphism,

(2) h(W**) = W** and h(W"™) = W™,

(3) h is a-Hélder with o sufficiently close to 1,
(4)

4) h is a C* diffeomorphism along the leaves of WYt and the derivative
D(h|yywstwu(zy) + ELsT — R s Holder continuous on T,

For an irreducible L with one-dimensional weak foliations, Gogolev and Shi showed
in the proof of [GSh23, Theorem 6.1] that joint integrability of W** and W** implies
(2). Hence we obtain the following corollary, which extends [GSh23|, Theorem 1.4] from
d=4to any d > 4.

Corollary 1.7. Let L be an irreducible symplectic hyperbolic automorphism of T¢
with splitting such that dim E*® = dim E"" = 1. Let f be a C* diffeomorphism
sufficiently C* close to L and preserving a C™ symplectic form. If the strong foliations
WY and W?*° are jointly integrable then f is C*° conjugate to L.

Remark 1.8 (Finite regularity). Our results hold if [ is a C* diffeomorphism rather
than C°, provided that t is sufficiently large, and with the C* regularity of other
objects replaced by C*=° for any § > 0. Theorems cmd require t > 1,5 defined
simalarly to . In particular, if L has one Lyapunov exponent on E*® then anyt > 1
suffices. Theorem requires t > r, Theorem requires t > max{rys, rss}, Theorem

requires t > Max{Tyu, Tuus Tws, T'ss }, and Corollary requires t > max{Tyy, I'ss -
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These are the regqularities needed to apply the results on normal forms. The proofs work
without any significant modifications.

Normal forms and holonomies. The proofs of the theorems above rely on our new
results of on normal forms and holonomies, which are of independent interest. We give
preliminaries on normal forms in Section |3| and formulate and prove the new results
in Section [l In the context of two invariant transverse subfoliations W and V of W*
we prove in Theorem that if D f|7y has narrow spectrum and the holonomies of
VY between W are sufficiently smooth then they preserve normal forms, i.e., they are
sub-resonance polynomials when written in normal form coordinates. This allows us
to use holonomies along V together with density of its leaves to obtain regularity of
the conjugacy along V. Prior results using normal forms with holonomies were in the
context of neutral foliations [FKSp11] [GKS23] and they do not apply to expanding or
contracting foliations. We use our results with both W = W?* and W = W"*. In the
latter case, even existence of normal forms is nontrivial since the leaves are of YW*¢ have
low regularity. We overcome this problem in Theorem by using smooth holonomies
of V = W*.

Structure of the paper. In Section [2] we give examples to illustrate the main the-
orems, and discuss irreducibility. In Section |3| we give preliminaries on normal forms,
and in Section [4| formulate and prove the new results. We prove Theorem [1.1|in Section
Bl Theorem [1.3]in Section [6, Theorem [I.4] in Section [7, Theorem [L.5]in Section [§] and
Theorem [1.6] in Section [

2. EXAMPLES AND WEAK IRREDUCIBILITY

2.1. Examples.

(i) We illustrate Theorem in a basic setting of a hyperbolic automorphism of T3,

which is aways irreducible. Let L be a hyperbolic automorphism of T? with eigenvalues
0 < Ags < Aps < 1 < Ay,

and let ey, €, and e, be corresponding unit eigenvectors. We consider a C'! small
perturbation f of L of the form

f(@) = L(x) + pu()en + pss(x)ess,
where ¢, and @, are smooth real-valued functions on T?.
Then a conjugacy between f and L can be found in the form
h([L’) =T+ ¢u(x)€u + ¢ss(x)ess-

One can take smooth functions ¢, and @, for which the corresponding functions ¢,
and ¢g, are not smooth, for example trigonometric polynomials as in [L92, Theorem
6.3] and [KtN|, Theorem 5.5.5 and Remark 5.5.6].

For such a perturbation, the linear foliation W*"%% is preserved by f and h, and
hence Wutss = Wutss = p(Wu*s%). While W* # W* we have h(W?**) = W*s
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since W = WuTss WS and h(W?®) = W*. We see that while h is not smooth,
h(z)** = 2% and hence is smooth on T¢. One can also see by differentiating term-wise
that ¢s(z) = — 32, Ni71o(f~*2) has one derivative in the direction of e,,. This
shows that h is C' along W**, which corresponds to (4) in Theorem However, the
series for higher derivatives may diverge, and the bundle £"* is only Holder in general.

(ii) One can modify this example to show that the implications (4) = (5) and (4) =
(1) in Theorem can fail without density of the Lyapunov leaves. We take an
automorphism

L=1L,xLy of T°=T3x T2

where L; is as in (i), and Ly is an automorphism of T? with eigenvalues 0 < p, < 1 <
ty = iyt and unit eigenvectors v, and v,. If ps < Ays, we can take W* for L as the
span of e, and v, and W™* as the span of e,,. We consider the perturbation

f(z1,22) = (La(21) + ¢(22)ews, La(za)).

Then the conjugacy can be written as h(x1, x2) = (21 + ¢(x2)ews, z2). Thus for a fixed
Ty the conjugacy is a translation on T® in W** direction, and hence (4) is satisfied. If
¢ is taken so that ¢ is not C'' on T? then component 72** is not C'! on T3 x T2. Thus (5)
fails and hence (1) has to fail too since (1) = (5). It can also be directly computed
as in [KtN, Remark 5.5.6] that h(WV*) # W*s.

(iii) In the setting of (i), we can similarly obtain perturbations satisfying the assump-
tions of the theorems below. Specifically,

f(x) = L(x) + pu(x)ey + pus(z)ess  for Theorem [7.1]
f(x) = L(z) + @uws(x)ess  for Theorem [I.4, and
f(z) = L(x) + pu(x)e, for Theorem [LEl

These examples illustrate the conclusions we get in these theorems.

2.2. Irreducibility and weak irreducibility.

We recall that L € SL(d,Z) is irreducible if it has no nontrivial rational invariant
subspaces or, equivalently, if its characteristic polynomial is irreducible over Q. The
eigenvalues of an irreducible L are simple. Irreducibility of L implies that any L-
invariant linear foliation of T is dense in T¢.

A weaker assumption on L, called weak irreducibility, gives denseness of every Lya-
punov foliation for L. It was introduced and discussed in [KSW23|, see Section 3.3
there. Let py,..., pn be distinct moduli of eigenvalues of L and let E* ... Ef™ be
the corresponding Lyapunov subspaces. We say that L is weakly irreducible if for each
7 the space Eri = ®;.i 2P contains non non-zero elements of Z4. Equivalently, there is
a set S C R so that for each irreducible over QQ factor of the characteristic polynomial
of L the set of moduli of its roots equals S. A weakly irreducible L is not necessarily
diagonalizable.
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Lemma 2.1 (Weak irreducibility). A matriz L € SL(d,Z) is weakly irreducible if and
only if for each Lyapunov foliation of L the leaves are dense in T¢.

Proof. We will prove the equivalence to the second condition above. Let p; be the
characteristic polynomial of L and pr, = [T, pi’“ be its prime decomposition over Q.

Let S = {p1,...,pm} be the set of moduli of roots for each p,. Suppose that for
some i the leaves of the Lyapunov foliation of W are not dense in T¢. Let E be the
minimal rational L-invariant subspace containing £*. Then E # R?. We consider the
restriction B = L|g and the induced operator C' on the quotient R?/E. Then we have
pL = pB - pc, and all three are rational polynomials. Hence pc = [T, pi*, and so by
the assumption pc has at least one root of modulus p;. Then p; has more roots of
modulus p;, counted with multiplicities, than the corresponding number for pg. This
is impossible since both should be dimFE?, as Efi C E.

To prove the converse, assume that for each Lyapunov foliation of L the leaves are
dense in T Let S = {p1,..., pm} be the set of moduli of roots of pr, and suppose that
for some p; € S and ky € {1,..., K} no root of py, has modulus p;. Let R? = @V, be
the splitting into rational L-invariant subspaces V; = ker pi’“(L). As the eigenvalues of
Ly, are the roots of py, we nave E#* NV}, = 0. This implies that E** C @j5, Vi. Indeed
Efi = @, (Vi N EP) since the splittings ;£ and @V have a common refinement.
Since @1k, Vi is a rational L-invariant subspace smaller than R?, we conclude that the
leaves of corresponding Lyapunov foliation W*i are not dense in T¢. U

3. PRELIMINARIES ON NORMAL FORMS

3.1. Smooth extensions and sub-resonance polynomials. Let £ be a continuous
vector bundle over a compact metric space M, let ' be a neighborhood of the zero
section in &, and let f be a homeomorphism of M. We consider an extension F : N' —
£ that projects to f and preserves the zero section. We assume that the corresponding
fiber maps F, : N; — &, are C" diffeomorphisms. We will consider » > 1, and for
r ¢ N we will understand C" in the usual sense that the derivative of order N = |r| is
Holder with exponent ov = r — |r].

We assume that the fibers &, are equipped with a continuous family of Riemannian
norms. We denote by B, , the closed ball of radius o > 0 centered at 0 € &,. For
N € Nand 0 < a < 1 we denote by CV™*(B,,) = CN**(B,,, &) the space of
functions R : B, , — &, with continuous derivatives up to order N on B, , and, if
a > 0, with a-Holder N** derivative at 0.

Definition 3.1. We say that F is a CN*% extension of f, where N € N and 0 < a < 1,
if for some o > 0 the fiber maps F, : By, — Epx are CNYY diffeomorphisms which
depend continuously on x in C topology with uniformly bounded norms | Fellon+as, ,)-

We say that ¢ = {@y }rex, where ¢, @ By o — Epy, is a CN+@ coordinate change if
it is a CNT* extension of the identity map on M preserving the zero section.
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For a smooth extension F we will denote by F' its derivative of at the zero section,
ie. F : & — &£ is a continuous linear extension of f whose fiber maps are linear
isomorphisms F, = DoF, : €, — Efq.

Definition 3.2. Let € > 0 and let

(3.1) X = (X1s---5Xe), where x1 <--- < x¢ <O.

We say that a linear extension F has (x,¢€)-spectrum if there is a continuous F'-
muvariant splitting

(3.2) E=&'d &

and a continuous family of Riemannian norms ||.||. on &, such that
(3.3) el < I (B)llge < 5H|tlla for every ¢ € &
and the splitting s orthogonal.

We say that a map between vector spaces is polynomial if each component is given
by a polynomial in some, and hence every, basis. We will consider a polynomial map
P& — & with P(0,) = 0, and split it into components (P;(t),..., Fi(t)), where
P& — S;. Each P; can be written uniquely as a linear combination of polynomials of
specific homogeneous types. A map Q) : £, — 8; has homogeneous type s = (s1,. .., Sp),
where sq, ..., s, are non-negative integers, if for any real numbers a4, .. ., a; and vectors
t;e &l j=1,...,¢, we have

(3.4) Qarty + -+ +agty) = ai - -a;' - Q1 + -+ - + ty).
Definition 3.3. We say that a homogeneous type s = (s1,...,8¢) for Q : &, — 5; 15

¢
(3.5) sub-resonance if x; < > s;x;.
=1

We say that a polynomial map P : £, — &, is sub-resonance if each component P;
has only terms of sub-resonance homogeneous types. We denote by S, ,, the set of all
sub-resonance polynomials P : €, — &, with P(0) = 0 and invertible derivative at 0.

Clearly, for any sub-resonance relation we have s; = 0 for j < i and Y s; < x1/xs-
Hence sub-resonance polynomials have degree at most d(x) = | x1/x¢]-

We will denote S, , by S, which is a finite-dimensional Lie group group with respect
to the composition if ¢ > 0 is sufficiently small |[GuKt98]. Any map P € S, , induces
an isomorphism between S, and S, by conjugation. In particular, this holds for any
invertible linear map which respects the splitting .
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3.2. Normal forms for contracting extensions. The following theorem was estab-
lished in [GuKt98| [Gu02] for » € NU {oco}, and in [K24] for this setting.

For a given x as in (3.1)), there is g9 = £¢(x) > 0 given by [K24] (3.13)] which ensures
that the spectrum is sufficiently narrow and will suffice for all results and proofs below.

Theorem 3.4. [K24, Theorem 4.3] (Normal forms for contracting extensions)
Let f : X — X be a homeomorphism of a compact metric space M, let £ be a contin-
uous vector bundle over M, let N be a neighborhood of the zero section in &, and let
F N — & be a C" extension of [ that preserves the zero section. Suppose that the
derivative F' of F at the zero section has (x, €)-spectrum with x1/xe¢ < r and € < &g.
Then there exists a C" coordinate change ¢ = {@.}eex with diffeomorphisms . :
B, o, — &, satisfying ¢, (0) = 0 and Doy, = Id which conjugates F to a continuous
polynomial extension P : € — &€ of f of sub-resonance type, i.e.,

(3.6) Qfz © Fyp =Py oy, where Py €Sy pp for allz € X,

If F is a C* extension then the coordinate change ¢ is also C°.

Any two such coordinate changes ¢, and ¢/, satisfy ¢! = ¢, o g, for some g, € S,.

4. NORMAL FORMS FOR CONTRACTING FOLIATIONS

Let f be a C" diffeomorphism of a compact manifold M, where r = N + a. We will
consider an f-invariant continuous foliation W of X with uniformly C" leaves. By this
we mean that for some R > 0 the balls B"(z, R) of radius R in the intrinsic Riemannian
metric of the leaf can be given by O embeddings which depend continuously on x in C¥
topology and, if r ¢ N, have a-Hdélder derivative of order N with uniformly bounded
Holder constant. Similarly, for such a foliation we will say that a function g is uniformly
C" along W if its restrictions to B"Y(x, R) depend continuously on z in CV topology
and have a-Holder derivative of order N with uniformly bounded Holder constant. We
also allow r = oo, in which case uniformly C* means uniformly CV for each N.

Definition 4.1 (Normal forms on a contracting foliation).

Let f be a C' diffeomorphism of a compact manifold M, and let £ be a continuous

f-invariant subbundle of TM tangent to an f-invariant topological foliation VW with

uniformly C' leaves. Suppose that the linear extension F' = D f|rw has (x, €)-spectrum.
We say that a family {oz}eem of C1 diffeomorphisms o, : W, — T, W, which

depend continuously on x in C' topology, is a normal form for f on W if for each

r € M we have ¢.(0) =0 and Doy, = Id,

Po= @0 fop, 1 TeW = TyyW is in Sy po,

and for anyy € W, the map @, o0, " : T,W — T, W is a composition of a sub-resonance
polynomial in S, , with a translation.
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Identifying W(z) with T,)V by ¢, we can view the transition maps ¢, o, ! as maps
of T,W and see that they are in the finite-dimensional group S, generated by S, and
the translations of T, .

In Theorems [1.4] and we will use normal forms for f on W = W?°. In this case
the leaves of W are uniformly C*°, so we can obtain a natural uniformly C'*° extension
of f by locally identifying 7,V with W(z) and apply Theorem [3.4 The following
theorem yields a normal form for f on W = W?** which is uniformly C*°. The proof
that ¢, 0 ! € S, is given in [KS16, [KS17].

Theorem 4.2. [K24, Theorem 4.6] (Normal forms for foliations with C" leaves)

Let f be a C", r € (1,00], diffeomorphism of a compact manifold M, and let W be
an f-invariant topological foliation of M with uniformly C" leaves. Suppose that the
linear extension F' = D f|rw has (x,e)-spectrum with x1/x¢ < r and € < &9. Then
there exists a normal form for f on W such that ¢, : W, — T, W are uniformly C”
diffeomorphisms.

4.1. Normal forms on C! leaves. In Theorem we will use normal forms for f
on W = W% In general, the leaves of W = W¥* are only C**Héler and g0 the above
result may not apply. In this case we construct the normal form using the next theorem
and smoothness of W?*® inside WW*. The latter yields that holonomies of W?*® are C*,
between C'*> transversals to WW*° inside W?.

Theorem 4.3. (Normal forms for foliations with C! leaves)
Let f be a C" diffeomorphism of a compact manifold M. Let U be an f-invariant
topological foliation of M with uniformly C" leaves. Let YW and V be f-invariant
topological subfoliations of U with uniformly C* leaves transverse in the leaves of U,
ve., T,LU=TW&T,V for each x € M.

Suppose that the holonomies H of V inside U are uniformly C”, and D f|rw has
(x,€) spectrum x1/x¢ < 1T and € < €qg. Then there is a normal form {@,} for f on W
such that for any © € M and any y € V(x) the lifted holonomy maps

(4.1) H,,=¢@,0Hsyo0, ' : TW—T,W

are C" diffeomorphisms, uniformly in x and y.

Proof. To construct the normal form we need to define a C" extension F that corre-
sponds to the restriction of f to the leaves of Y. Since the leaves of W are only C!,
we use the action of f transversally to V inside U to define F. More precisely, for
any r € M we identify in a uniformly C" way a small ball B,(z) in 7,V with a C”
submanifold of U(x) tangent to T,V at x. Thus we obtain a uniformly C” family 7,
of transversals to V inside U:

(4.2) ig : TyW D By(x) = U(x), iu(By) =Ts Dyl =1d.

Using these transversals we consider the following holonomy maps of V:

(4.3) H,: T, = W(x) and Hy, : f(T2) = Tha
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We note that H 2 1s uniformly C” by the assumption on holonomies of V since f(7,)
and Ty, are uniformly C" transversals, but H, is only uniformly C' as W(x) is assumed
only C*'. Using these maps and the identifications i, we define the C” extension of f

F, = 2]7; 07:[f$ oflr0iy = (Hpzoifs) o flw@y o (Haoiy) : TV = T W.

In fact, the maps H, o i, give an atlas of local coordinates on the leaves of W with C”"
transition maps. This gives W(z) a structure of C" manifold, which is C' consistent
with the submanifold structure. We will denote by W(x) the leaf equipped with this
O structure. With respect to it, the restriction of f to each leaf, f, : W(z) — W(fz),
becomes uniformly C”, as in these local coordinates it coincides with the extension F,.
Now this setting becomes essentially the same as in the case of C" leaves. Theorem
gives normal form coordinates ¢, : T, VW — T, W for the extension F and hence

(4.4) O = Pp0 (Hpoip)t: W() = T,W

is a normal form for f on W, moreover ¢, € C"(W(z), T,W). The proof that ¢, 0@, €
S, is the same as in [KS16] [KS17].

For any y € V(z), the holonomies of V between the transversals H,, : T, — T, are
uniformly C" and are related to the holonomies between the leaves H, , : W(x) — W(y)

by ?:lm,y = ’H; 10Hm,yoH:c~ By the construction of ¢ this yields that the lifted holonomies
H,, are also uniformly C", since

(4.5) Hx,y =y o Hyyo 30;1 =y o iz;l © ﬁwfy 0z O 90;1 W = TV
Even though the holonomies H,, : W(z) — W(y) are only C', the holonomies
Hay : W(z) = W(y) are C". O

In the setting of the previous theorem, we formulate our main technical result on
relationship between holonomies and normal forms. We will apply this theorem with
U =W? to both (V, W) = W** W™*) and (V, W) = W, W*) .

Theorem 4.4 (Holonomy invariance of normal forms). In addition to the assumptions
of Theorem suppose that the foliation U is contracted by f, i.e., ||Df|ru|| <1 for
some metric. Then for any © € M and y € V(z) the lifted holonomy map s a
sub-resonance polynomial, i.e., H,, € S, .

4.2. Proof of Theorem [4.4l

We denote TW by € and let £ = E' @ --- @ £ be the invariant splitting for Df|¢.
First we show that the derivative DH,, = D]:vay : & — &, preserves the flag of

strong subbundles, i.e., for each k =1,... ¢,

DM,y (E;%) C 5;’k, where EVF =&'q ... &F.
Since the foliations VW and V are f-invariant, we have the commutation relation

(4.6) JroHay = Hpng ry 0 [ 2 Wa = Wiy,
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Differentiating this relation we obtain
Df"e, 0 DHay(x) = DHpno pry (f"2) 0 Df"|e, & = &

We consider a non-zero vector u € £¥ and let j be largest index so that the j component
of v = DH, ,(z)u is non-zero. We need to show that j < k. Suppose that j > k and
hence xi + ¢ < x; — € since € < g9. Then we obtain a contradiction as follows. First
we have

IDf"e, © DHay (@) ull = [|Df 0l > X7 |[uy]].
On the other hand,
IDH g oy (f"2) © Df*|e,ull < (DH g oy (f*) || - [ DS |e,ul] < CeF ],

since || DH ry pny(f")|| is uniformly bounded in n as disty(f"z, f"y) decreases. This
is impossible for large n since x; + ¢ < x; — €. Therefore DH, ,, preserves the flag.

We take arbitrary € M and y € V(x) and consider the lifted holonomy (suppressing
the bar in this proof)

Hx,y = Hm,y = Py © Hx,y o 90;1 & — gy-
We write its Taylor polynomial of degree M = |r] at 0 € &, as

M

T (Hay)(t) = > HID() 2 €, — &,
m=1
where H(™ : &, — &, is a homogeneous polynomial of degree m. Now we show

mductlvely that this Taylor polynomial contains only sub-resonance terms. Writing f”
in normal form coordinates we have

@f"xofn|W(a:) 0‘10;1 = P;L 51‘ _>€f”oc>

where the polynomial map P?(t) = S>¢ _, P{™(t) contains only sub-resonance terms

and in particular has degree at most d = | x1/x¢] < M. With similar notations for v,
the commutation relation (4.6) becomes

(4.7) Hpng gnyo Py = PloHyy @ E — Epny.

We already proved that the first derivative H élqj = D, H,, preserves the strong flag,
which means exactly that it is a sub- resonance linear map.
Inductively, we assume that H ) has only sub-resonance terms for all z € M,

yeV,andm=1,...,k—1and show that the same holds for Hx"g We split
H(kg — Sx,y + va,y

into the sub-resonance part and the rest. It suffices to show that N,, = 0 for all
y € W, that are sufficiently close to x. Assuming the contrary, we fix such x and y
with N, , # 0. We will write N, for N, , and Nyn, for Ngny pn,. We consider the Taylor
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terms of order k in the commutation relation (4.7). They come from the compositions
of the respective Taylor polynomials

M ) d d M .
ZHfim,fny<Z ngm)(t)) and leyw S HO®) ).
J=1 m=1 m= 7j=1

By the inductive assumption, N, and Ny», are the only non sub-resonance terms of
order k in these polynomials, and all lower order terms are sub-resonance. Since any
composition of sub-resonance terms is again sub-resonance, taking non sub-resonance
terms of order k on both sides yields the equation

(4.8) Npno (PO(1) = PV (Na(t)).

Y

We decompose N, into components N, = (NL ... NY and let ¢ be the largest index
such that N # 0, i.e., there exists ' € &, so that z = N, (t') € £, has component
0 # z; € £,. We denote

(4.9) w = Py(l)(z) = DP}(0)z = Df"(y)z € Emy and w; = Df"(y)z; € Efn,
its ith component. Then
(4.10) |w;|| > Ceni=e),

where the constant C' = ||z;|| does not depend on n.

Now we estimate from above the ith component of N, (P (¢)). First,
1P = [[Df"(2) ]| < ||| "0+ for any j.

Let Nf., be a term of homogeneity type s = (si1,..., ) in the component N}nw. By
homogeneity, its norm can be estimated as

[N, (Pél)(t/)) | < [N pg]| - [|£]]" - o 380 +e).

Since no term in N}nm is a sub-resonance one, we have x; > > s,X; and hence, since
e < g9, we also have x; > 3" s;x; + (n + 2)e. Then the left side of (4.8)) at ¢’ can be
estimated as

[N, (PO(E)) | < Cents22),

where the constant C’ does not depend on n since the norms of H}k)m ny» and hence

those of Nyn,, are uniformly bounded. This contradicts (4.10]) for large n.

Thus we have shown that Ty,(H,,), the Taylor polynomial of degree M for H,, at
0 € &, contains only sub-resonance terms for all x € M and y € V(z). It remains to
show that H, , coincides with T (H, ).

In addition to (4.7]), the same commutation relation holds for the Taylor polynomials
(411) TM(anx’fny) o Pg — P; o) TM(Hm,y)
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Indeed, the two sides must have the same terms up to order M, but they are sub-
resonance polynomials and thus have no terms of order higher than d < M. Denoting

An = Hpng pry = T(Hjng gny)
we obtain from and that
(4.12) Py oHyy— P, oTy(H,y) =A,0P;.
We denote
A=H,, —Ty(Hyy): & — &,

and suppose that A # 0 for some z,y. Let 7 be the largest index for which the ith
component of A is nonzero. Then there exist arbitrarily small ¢ € £, such that the
ith component z; of z = A(#') is nonzero. Since P} is a sub-resonance polynomial, the
nonlinear terms in its ith component can depend only on j components of the input
with j > 4, which are the same for H, , and T'(H,,) by the choice of i. The linear part
of P" is D f™(y) and it preserves the splitting. Thus the ith component of the left side

of (4.12)) at ¢’ is D f"(y)z;. So we can estimate the left side of (4.12) at ¢/
(4.13) [[(Py © Hay — Py o T(Hauy)) ()| 2 D" (y)aill = "% z3]| > "0 |2])

Now we estimate the right side of ([4.12)). Since Hjny, pny, is CMT*, there exists a
constant C' determined by || H ny fnyl|cm+a such that

(4.14) A, (#)]] < Ot for all t € Epn, with [|t]] <0

for a sufficiently small 6 > 0. This C' can be chosen uniform in n and close x, y.
Also, for a sufficiently small 6 > 0 we can estimate P} as

(4.15) |Pr(t)] < e"(X”2E)\|t|| for all n € N and ||¢]| < 0.
This follows from the fact that for all x € M we have
|DoP.|| = | Dfle,|| < €™ and hence || DyP,|| < eX¢t

for all points ¢t € &, with ||t]] < ¢ for a sufficiently small § > 0. Hence P, is a
eX¢t2_contraction on the ¢ ball in each &,, and (4.15)) follows.

Combining (4.14)) and (4.15)) we estimate the right side of (4.12)) at ¢’ as
[(Bao P2 ()] < CIPR(E) M+ < Ol el

Now we see that this contradicts (4.13) for large n since (M + a)x, = rxe < x1 and
since € < g is sufficiently small. Thus, A = 0, i.e., the holonomy map H, , coincides
with its Taylor polynomial of order M. This completes the proof of Theorem [4.4]
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5. PROOF OF THEOREM [1.1]

We first note that
(3) = (2) is clear, and
(1) = (2) holds since we always have h(WV*) = W*"

and hence the joint foliation for W* and W** is h=1(W* & W**).

The converse (2) = (1) is part of [GSh23, Theorem 1.1].

Next we prove that
(1) = (5) = (4) and
(1) = (3), more precisely (5)+(2) = (3).

Finally we show (4) = (1) under the assumption on density of Lyapunov leaves.

(1) = (5). We assume that h(W?**) = W**. We apply Theorems and 4.4 with
U=Ws: W =W and ¥V = W?*, and denote £¥* = TW®"*. Since f is C! close to L,
the linear extension D f|ews has the corresponding (x, €) spectrum with small e. Since
W?** is a C'* subfoliation inside the leaves of W?*, Theorems {4.3| applies and yields the
normal form coordinates ¢, on W*?® given by equation

o WU () — £V

The maps ¢, are C* diffeomorphisms which depend continuously on z in C! topology.
Further, Theorem [4.4] yields that the holonomies H = H*¢ of W** inside W* between
leaves of W"* are sub-resonance polynomials in these coordinates (4.1)), i.e.,

I:Ix’y =y 0 Hyyo ot EYS £ isin 8,y

xT

Since h(W?**) = W* and h(W"*) = W™s  the two foliations form a global product
structure inside the leaves of W* conjugate by h to that of the linear foliations. In par-
ticular, the holonomies H are globally defined on the leaves of W*?. The corresponding
linear holonomies H for L are translations along W**:

if y € W*(z) then H,,(z) =z + (y — x),
and h conjugates H and H as follows
Haw),hw) = hoHayo h™".

We fix an arbitrary € T¢ and y € W¥*(z). By the assumption, the linear leaf
W#s(x) is dense in T¢. Hence there exists a sequence of vectors v, € E* such that
h(zx) + v, converges to h(y). Denoting y, = h~'(h(z) + v,) we obtain a sequence of
points y,, € W**(x) converging to y.

The corresponding linear holonomies H,, = Hj(y), n(y,) converge in C° to the trans-
lation H, in W*™*(h(x)) by the vector v = h(y) — h(x). Hence the holonomies H,,,
converge in C° norm to the homeomorphism

Hy : WY (x) — W (y) = W¥(x) such that H, = hoH,oh™".
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Since the normal form coordinates ¢, depend continuously on y, the corresponding

lifted holonomies H, ,. = ¢y, © Hay, © py' € Spy, converge to the homeomorphism

Ppy=p oMo, =¢,0h™ oH,0hop': EX° — E.

T

The map P, is also a sub-resonance polynomial, i.e., P, , € S, .
Now we lift the restriction of h to W**(x) to &, using coordinates ¢,

he =hop,': Y5 — WY (h(z)),

xT

and conjugate by h, the translation H, of W™*(h(x)) to the corresponding map of &,
Hv = (Bz)_loHvoBz :gpwoh_loHvohocp;I :90$090;10PI731: S;US _>5;US

By the property of normal form coordinates, the map ¢, o <p;1 &S 2 is a
composition of a sub-resonance polynomial in S, , with a translation of £;’°. Since P, ,
is a sub-resonance polynomial in S, ,, we conclude that H, € S,, the finite dimensional
Lie group generated by S, and the translations of £,. Thus h, conjugates the action of
Evs = R¥ by translations of W**(h(x)) with the corresponding continuous action of R*
by elements of the Lie group S,. This yields the injective continuous homomorphism

N B — S, given by n,(v) = H, = (hy) ' o H, 0 h,.

It is a classical result that a continuous homomorphism between Lie groups is automat-
ically a Lie group homomorphism, and so it is automatically C*°, see for example [Hal,
Corollary 3.50]. Thus 7, is a C* diffeomorphism onto its image in S,. We conclude

that (h,)~! is a C* diffeomorphism between W**(h(x)) and E¥* since it is determined
by 7, as follows
(he) ™" (h(2) +v) = Hy(0) = 1,(v)(0).

Hence h, : £ — W™(h(z)) is also a C* diffeomorphism. Further, since the normal
form coordinates ¢,, as well as holonomies and their limits, depend continuously on
x, the constructed continuous action on £° and the corresponding homomorphism 7,
also depend continuously on x. This implies that 1, depend continuously on z in C*
topology, because it is determined by the corresponding linear homomorphism of the
Lie algebras. This yields that h, : £¥* — W®**(h(z)) also depends continuously on x
in C* topology. We conclude that the restriction of h to W"*(z)

Bty = ha 0 00 1 W () — W (h(z))

is as regular as ¢,. If the leaves of W"* are uniformly C'?, then so are the maps ¢,
given by since the holonomy H, from a smooth transversal to the leaf W"*(x) is
as regular as the leaves. Hence in this case h|yyws(s) is a uniformly C? diffeomorphism.
In particular, since the leaves of W"* at least uniformly CHHOMer “ply, 000 is at least
a uniformly C1*+Hoder diffeomorphism.

To complete the proof of (5) we will now show that the component h** is C* on T¢.
First, h** is (locally) constant along W*"** and hence is uniformly C*° along it, since
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its leaves are uniformly C*°. By Journe lemma [J88],[KtN, Theorem 3.3.1] it suffices
to show that ~A"* is also uniformly C'*° along smooth transversals to W"*ss,

As in the construction of normal forms on W"* we consider the embeddings of small
balls By*(z) in £ as a local family of smooth transversals and denote

ip: By(x) = W?, in(By(@) = To, He=H) T = W(2).
We recall that the normal form coordinates (4.4]) are given by
O = Pp 0 (Hpoip) t i WS — E8,
where ¢, @ £° — &£ is the uniformly C* coordinate change for the extension .
Since we know that both h, and i,0(¢,)~! are uniformly C*° diffeomorphism and since
he =ho(p,) ' =hoH,o0i,0(p,) " : EY — W™ (hx)

we conclude that ho H, : T, — W**(hx) is also uniformly C*°, and in particular so

is its ws-component. We claim that (h o H,)"* = (h|7,)"*. Indeed, for any y € T,

we have H,(y) € W*(y) and, since h(W?**) = W** we get h(H.(y)) € W*(h(y)) and

thus they have the same ws-component. Therefore, (h|7,)"* = h"*|7, is uniformly C'*

along this family of transversals to W¥**$_ and we conclude that h* is C* on T
This concludes the proof of (1) = (5).

(5) = (4). Since (5) yields that h|yyws() is a C* diffeomorphism, it remains to
show that its derivative is Holder on T¢. Since h maps W¥*(z) to the linear leaf
W™s(h(z)), this derivative coincides with the restriction of the derivative of h"?,

D(h‘Wwb(I))(m) - D(hws‘st(x))(x) - D(hws)’gws(m) : S;US — Ews C Rd.

Since h** is C* on T? by (5), this restriction is as regular as the subbundle £¥%, and
so at least Holder continuous on T¢.

(1) = (3). Since (1) implies (2), we have the joint topological foliation W"*5¢ =
=Y (We @ W*). Now we use (5), which follows from (1), to show that W is
conjugate to the linear foliation W* & W** by a C* diffeomorphism. We take h to be
the conjugacy close to the identity and write

h(z) =z + Ax) = x + A" (z) + A" (2),
where A : T? — R? is split into components A% : T¢ — E¥S and A%Fss . Td —
E" & E*°. Now we consider the map
h(z) = h(z) — A" (2) = 4+ A (z) : T¢ — T

We note that both h and h are C° close to the identity. The first formula shows that
h is an adjustment of h along W* @ W* and thus, since h(W*5%) = W* & W**, we
also have that h(W"t5) = W* & W*. Now we show that & is a C> diffeomorphism
of T?, and hence it smoothly conjugates W5 to W* @ W**. We can locally write

iL(l’) —x+ Aws(x) — xu-‘y—ss + st + Aws(l,) — xu—i—ss + hws(l’).
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While the components h¥*, 2455 and z“* are globally well-defined only for the lifts to
R?, they make sense locally on T¢. By (5), the component h** is C* on T¢ and hence so
is h. Thus to prove that & is locally a C°° diffeomorphism it suffices to show invertibility
of its derivative. We view Dh with respect to splittings £¥* @ E4755 — EWs @ Evtss,
Since h%* is constant along W¥**** and a C! diffeomorphism along W** we see that Dh
is block triangular with invertible block £* — E**. Now invertibility of Dh follows
from that of the other diagonal block D(z""**)|cu+ss. The latter is clear since ;7 is
transverse to E"* and thus the derivative of “"*%, which is just E“"*-component of
the identity, has full rank on £*7*5. The global surjectivity and injectivity of h also
follow now since it is C? close to the identity. This concludes the proof of (1) = (3).

(4) = (1) if the leaves of W1 ... W* are dense in T¢.
Since f is C! close to L, the linear extension D f|gws has the corresponding (y, €)
spectrum and the Holder continuous splitting

(5.1) Er =" &
which is C° close to the Lyapunov splitting for L on E**. We recall that £! is the
strongest and £° is the weakest. We let

gi,ss:gi@__‘@f:l@gss‘
Since £%%% is a strong subfbundle of £%, it is tangent to a C* subfoliation Wi’ss inside
We. Since we assume that hlyws(,) is a C' diffeomorphism, each bundle £ is tangent

to the foliation W' = h~'(W?"). The implication (4) = (1) follows from the next
proposition.

Proposition 5.1. Assume that h is a C* diffeomorphism along W** with the derivative
D(hlywws@y)(x) : E° — E* C R Hélder continuous on T<.
[f h(y\ﬂ,ss) — Wi,ss then h(Wi—l,ss) — Wi—l,ss'
We apply the proposition inductively from ¢ = ¢ to ¢ = 1. For ¢ = ¢, the assumption
h(W?hss) = W is satisfied since it is h(W?) = W*. For i = 1 we obtain (1).
The proof of this proposition is similar to that of [GKST1] Proposition 2.5]. However,

in [GKS11] the automorphism L was assumed to be irreducible, while we only assume
density of the leaves of W** and the Lyapunov subfoliations of W*"?.

Proof of Proposition[5.1. We will use the following notation in this proof:
W _ Wi, v — ‘/Vi—l,ss7 U = W ey V _ Wz D Wi—l,ss _ Wi,337
and similarly for the corresponding nonlinear invariant foliations of f,
W:WZ" V:WZ'—LSS7 UZW@W:Wi,SS'

By the assumption, h(U) = U. We let ‘7~: h(V). Then V is a subfoliation of U with
continuous leaves. We need to show that V' = V. Since W = h(W), the foliation V' is
topologically transverse to W, i.e., any leaf of V' and any leaf of W in the same leaf of
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U intersect at exactly one point. Thus for any point a € T¢ and any b € V(a) we can
define the holonomy map H, : W (a) — W (b) along the foliation V. The key step is
to show that Hal, a parallel translation inside U. This is similar to [GKS11, Lemma
2.6, but in [GKS11] the automorphism L was assumed to be irreducible, which yields
conformality of L on W. We modify the argument for the general case when Jordan
blocks may create nonconformality.

Lemma 5.2. For any point a € T¢ and any b € f/(a) the holonomy map ]:Ia,b s a
restriction to W(a) of a parallel translation inside U.

Proof. For any point ¢ € T? and any d € V(c) we denote by H.4: W(c) — W(d) the
holonomy along the foliation V. Since V is a strong subfoliation of U, it is C* inside
the leaves of U and hence the holonomies H. 4 are C* with the derivative

DHeg: TNV = TV
depending Holder continuously on ¢ and d. Since V = h(V) and h(W) = W we have
Hap=hoHp-1an1myoh"
It follows fr9m the regularity assumption on hlyws that the maps ﬁ]a’b are also Ct. To
show that H, is a parallel translation, we prove that the differential DH,;, = Id. We

apply L", which contracts U, and denote a,, = L"(a) and b, = L"(b). Since V =h(V)
and f preserves the foliation V, the map L preserves V and we can write
]:Ia’b =L"o [jlambn o L™
Differentiating and denoting D, ﬁan,bn =Id + A, we obtain
DoH,p = (L7"|w) 0 (Da, Ha,p,) 0 L™ |w = Id + L™y 0 A, o L[y

Since W is a Lyapunov foliation for L, all eigenvalues of L on W have the same modulus
and hence the quasiconformal distortion of L"|y grows at most polynomially,

IL7"lw | - |IL"w || < Cn®* for all n,
where k + 1 is the largest size of Jordan blocks of L"|y,. Thus we obtain
| L7 w o A, o L"w|| < Cn®*|A,|| for all n.

It remains to show that ||A,| — 0 exponentially in n. We differentiate the equation
Ha, by = h o Hp-1(a,), h-1(6,) © 7" at ay,

Day, Hay, 5, = (Dh-15,)Blw) © (D1 () Ha 1@ n 1 (5) © (Da (Blw) ™),
and denoting Dy, -1(4,\Hn-1(a,),h-1(b) = 1d + A}, we obtain
Doy, Ha, b, = (Di-1,)hlw) © Da, (hlw) ™" + (Dy-10,)hlw) © A, 0 Da, (hlw) ™.
Denoting Dp-1(,,)h|w © Dy, (hlw) ™' = 1d 4+ A we conclude that
1AL = [1d = Day, Happ | < IATI+ 11Dn1 ooyl - 1AL - D, (PIw) -
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By the regularity assumption on h|yws and Holder continuity of T,W = &' we have
Holder dependence of D, (h|w) : T, W — W on x. It follows that that

|1 Dp-1,) 2wl - | Dan (Alw) "] is uniformly bounded and
|AY] is Holder in dist(ay, by).

Also, ||Al ]| is Holder in dist(ay,, by,) since D.H. 4 depends Holder continuously on ¢ and
d and D.H.4 = Id. Now since dist(a,, b,) — 0 exponentially as n — oo we conclude

that so does ||A,| and hence DH,, = Id. O

Now we complete the proof of Proposition as in [GKS11, Proposition 2.5]. Let
a be a fixed point of L and let B be the unit ball in V(a) centered at a. If B C V(a),
then V(a) = V(a) by invariance of V and V under L='. By the assumption, the leaf
V(a) is dense in T It follows that the set of points x such that V(z) = V() is dense
in T¢ and hence V = V. Therefore, it suffices to show that B C V(a).

We argue by contradiction. Assume that there is z; € B such that z; ¢ V(a). Let
zy = W(z) N V(a). Since W has dense leaves we can choose a sequence {b,,n > 1}
in W(a) so that b, — x1 as n — oco. Let y,, = f[a,xl(bn). Continuity of V implies that
the sequence {y,} converges to a point 5 € V(a). Moreover, Lemma implies that
{x1, 72} is a parallel translation of {a,z;}.

We continue this procedure inductively to construct the sequence {z,,n > 1} in
V(a). Let z, = W(z,) NV (a). Then by the construction

dy(zn,a) =n-dy(z1,a) and  dw(x,,2,) =n-dw(ry, 21),

but this is impossible since L contracts V' exponentially stronger than W. Indeed, if
we take N(n) to be the smallest integer such that L™ (z,) € B, then

dw (LY (2,,), LN™(2,)) = 00 as n — oo,

which contradicts max,cp dyw (z, W(2) NV (a)) < co. Thus V =V. O

6. PROOF OF THEOREM [L.3l

The proof of Theorem works for the global setting with only minor adjustments.
In this case, (2) = (1) as well as h(W"*) = W"* is given by |[GSh23| Theorem 1.1].
Further, [GSh23, Theorem 1.2] yields the dominated splitting and spectrum for D f|guws
matching that of L, which implies that D f|cws has (x, ) spectrum for any € > 0. The
remaining arguments work without change, except in (1) = (3) we only obtain that
is a local > diffeomorphism, as its injectivity is not clear. Still & gives local foliation
charts for W"*%5, Moreover, the Holder continuous metric on £“* invariant under the

holonomies of W*"5¢ can be pulled by h using the linear foliation as in the proof of
Theorem [1.5{(3) = (2) below, since this is a local property.
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7. PROOF OF THEOREM [1.4]

Theorem follows from Theorem below where we assume only the regularity
of holonomies of W"* between the leaves of WW*°.

Theorem 7.1 (Rigidity of weak holonomies). Let L be a hyperbolic automorphism of
T with dense leaves of W¥s. Let f be a C™ diffeomorphism sufficiently C close to
L, and let h be a topological conjugacy between f and L.

Let rss(L) be given by . and let ¢ > 1 be a noninteger such that the leaves of
WY are uniformly C1. Then for the statements below we have

(1) = (1) = (2) = B) = @)

(1) Holonomies of W™* between the leaves of W** are uniformly C™ with r > rs(L),

(1) Holonomies of W™ between the leaves of W** are uniformly C*°,

(2) h*® is a uniformly C* diffeomorphism along W%,
and h** is C? on T¢,

(3) The joint foliations W ™5 is conjugate to the linear foliation W* & W™ by a
CY diffeomorphism,

(4) W™ is a uniformly C'? subfoliation of W*.

If in addition h(W**) = W**, then

(1,1',2) <= his a uniformly C*° diffeomorphism along W**
<= his a uniformly C” diffeomorphism along W** with r > rg(L).

7.1. Deducing Theorem from Theorem |7.1

We recall that for a noninteger r > 1 a foliation is C" if and only if its leaves and
local holonomy maps are uniformly C”, see e.g. [PSW97, Theorem 6.1(i)].

Also we always have h(W™*) = W** and hence W* and WY* are jointly integrable
and the foliation W¥™*¢ is h=1(W* & WWws).

(1) = (2). (1) implies Theorem 1) and hence Theorem [7.1|2). Since (1) also
implies that we can take ¢ = r Theorem (7.1, we obtain that h% is C" on T¢.

(2) = (3). (2) implies Theorem [7.1}2) with ¢ = r and hence it yields Theorem
7.1(3) with ¢ = r, which is (3).

(3) = (1). (3) implies Theorem [7.1|(3) with ¢ = r and hence it yields Theorem
7.1(4) with ¢ = r, which is (1).

The additional statement for h(WV**) = W** also follows from the corresponding part
of Theorem [Z.1]

7.2. Proof of Theorem [7.1]. It follows the same scheme as the proof of Theorem [1.1]

We denote £% = TW?**. Since f is C! close to L, the linear extension D f|gss
has (x,¢) spectrum with small . Since W?** has uniformly C'* leaves, we can apply
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Theorems [£.2 to YW = W* and obtain the normal form coordinates ¢, on W**
pa s WP () = &7
The maps ¢, are C* diffeomorphisms and depend continuously on x in C'*° topology.

(1) = (1’). Suppose that holonomies H = H"* of W** inside W* between the
leaves of W?** are uniformly C" with r > 74(L). Hence we can apply Theorem 4.4 with
U=W: W =W?* and V = W". Indeed, the lifted holonomies H in (4.1]) are also

C", and so the theorem yields that they are sub-resonance polynomials:

(7.1) Hyy=@yoHoyop,' - £ —=E° arein S,,,

x

and in particular are C*°. Since the coordinates ¢, are also uniformly C'*°, we conclude
that holonomies H = H"*® are uniformly C*°.

(1) = (2). Now we use (7.1)) to show that h** is uniformly C* along W**. Since we
do not assume h(W?**) = W** we need to adjust the holonomy argument accordingly.
We fix a point z € T¢ and consider the map

hy : W3(z) — W*(h(z)) given by h, = Hp(y 0 hlwssz), where

7.2
(7:2) Hyy + h(W*(x)) — W**(h(x)) is the linear holonomy along W**.

We will prove that the maps h, are uniformly C*°.

We fix y € W*(x) and take a sequence of points y,, € W"*(x) converging to y. This
can be done since the leaves of the linear foliation W™ are dense in T¢ and the leaf
conjugacy h is a homeomorphism which sends W*?® to W™?.

Since h(W™"*) = W™  the holonomy maps H, ,, : W?**(z) — W?*(y,,) are conjugated
to the corresponding linear holonomies Hy (), n(y,) : W**(h(x)) — W**(h(yn)),

Hay, = (ﬁyn)_l 0 Hp(z), n(yn) © ilx P W (@) = WP (yn).

We note that Hy(y), n(y,) are translations H,, by the vectors v, = h(y,) — h(z). Since
yn, converge to y, and hence h(y,) converge to h(y), we see that for v = h(y) — h(z),

Hy), hiyn) = Hy, converge to H, : W*(h(x)) — W*(h(y)).
Since izy depend continuously on y, we obtain C° convergence
Ha,y, converge to (hy) ™l o Hyohy : W(z) = W(y) = W*(x).
For y € W**(x) we have that ﬁy and h, are related by the translation holonomy Hj
oo (hy) ™t = Hy - W*(h(y) — W*(h(x)),
where o = hy(y) — h(y) € E¥s. We conclude that
(7.3)  Hay,, converges to My = (hy) ™' o Hyohy : W¥(x) — W (x) = W*(y),

~

where H; = Hj o H, is the translation by 0 = v+ 0 = h,(y) — h(x).



RIGIDITY OF STRONG AND WEAK FOLIATIONS 24

Since ¢, depend continuously on y, using (7.1)) and (7.3) we obtain that the corre-
sponding lifted holonomies H,,, converge to a sub-resonance polynomial P, , € S, ,,

Py =py0Hsop,t =p,0(h) oHyo(hy)op,': 5 — &2

Now we lift h, to W*(z) to &, using coordinates @,
By = hy o' s 5% — W (h(x)),
and conjugate the translation H; by h, to obtain
Hy = (he) o Hyohy =proh™ o Hyohoyp,' =, 00, 0 Pry: £ — E°.

Since P,, € &;, and ¢, o go;l : 5;5 — &2 is a composition of a sub-resonance
polynomial in S, , with a translation of £J° we conclude that H, € S,, the finite
dimensional Lie group generated by S, and the translations of £5°. Thus h, conjugates
the action of E** by translations of W**(h(x)) with the continuous action of E*® by
elements of S,. So we get the injective continuous homomorphism

Ne: B — 8, given by 0,(0) = Hy = (hy) "' o Hy 0 hy.

which is C'"* and depends continuously on x in C'* topology. This yields that ﬁ;l and
h, are also C™ diffeomorphisms that depend continuously on z in C* topology.

This proves that the component A% is uniformly C'* along the leaves of W% as
it is casy to see that h, = h**|yyss(zy under a local identification of W**(h(x)) with
E*. Since h*® is also locally constant along the transversal leaves W“t%$ it is as
regular along these leaves as they are. Since W" has iniformly C* leaves and W™
has uniformly C?, the leaves of the joint foliation W**t*$ are uniformly C'?. By Journe
lemma we conclude that h** € C9(T9).

(2) = (1). Since h** € C°(T%) and h, = h*|yyss, it follows that the maps h, are
uniformly C> along the leaves of W**. It is easy to see from the definition | . ) that
hy conjugates the holonomies of W*"* inside W?* with corresponding linear holonomies:
Hoy = (hy) oH,,o h, and hence H,,  are uniformly C>.

The case when h(W**) = W=,  When h(W?**) = W** it is clear from that
hlwss = hy = h*|)yss and hence (2) implies that % is a uniformly C> diffeomorphism
along W#. Conversely, if h(W?**) = WW** and h is a uniformly C" diffeomorphism along

W?* with r > rg (L), then so are the holonomies of W™% as they are conjugate to the
linear holonomies: M, = (hlyss(y)) ™" © Hyy 0 hlyyss(z). This yields (1).

(2) = (3). The argument is almost identical to the proof of (3) of Theorem [L.1]
We map the joint foliation W*tws = b= (V" & W**) to W* @ W* by the map

h(x) = h(x) — A3 (z) = x4+ A*(z) = 2T + h*%(z) : T¢ — T
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This map is C° close to the identity and is in C%(T?) since h** is C(T?) by (2).
Invertibility of its derivative Dh follows as in Theorem from the fact that h, =
R yyss () - W (x) — W*(h(z)) is a C* diffeomorphism by the proof of (2).

(3) = (4). This follows by intersecting the C? foliation W**** with uniformly
C> leaves of W?*.

8. PROOF OF THEOREM [L.5l

We note that (2) <= (2) does not require dense leaves.

(2) = (2'). Since h(W*) = W*, the component h® is locally constant along W*,
and hence uniformly C* along W*. Together with (2), this yields that h® is in C°°(T4).

(2') = (2). Since h(W?) = W* we have h|ys = h®|,ys under a local identification
of W# and E?, and hence a uniformly C'*° diffeomorphism.

(1) = (2') follows by combining Theorems and Indeed, h(W?**) = W*
is Theorems ﬁ(l) and hence yields Theorems [1.1{(5), so that h** is in C*°(T¢) and a
C1? diffeomorphism along W"* with some ¢ > 1. The second assumption in Theorem
1.5(1) is Theorem [1.4(1) with r = co and hence yields Theorem [1.4)2) with r = oo, so
that A% is in C*°(T%) and a C*° diffeomorphism along W**. Hence h® = h"* 4+ h* is
in C*(T%) and a diffeomorphism along W*.

(2") = (3). The argument is almost identical to the proof of (3) of Theorem [1.1]
We map the foliation W* to W* by the C'*° diffeomorphism

h(z) = h(z) — A%(z) = 2+ A(x) = 2% + h*(z) : T¢ — T
This map is C° close to the identity and is in C*°(T¢) since h® is in C>(T9) by (2).

Invertibility of its derivative Dh follows as in Theorem from the fact that h® is a
diffeomorphism along W?*.

(3) = (2). This implication requires only that W™ has dense leaves, which is al-
ways true for a hyperbolic automorphism. The proof highlights usefulness of conjugacy
to a linear foliation. It is an easy version of the holonomy argument where normal form
polynomials are replaced by isometries.

Let ¢ be a C* diffeomorphism such that (V") = W* and let W' = ¢(W*). Since
W™ is linear, its holonomies between W? leaves are isometries with respect to the
standard metric on T¢. For each x € T? both T,W* and T, W' are transverse to
E" = TW", and so we can identify them by the projection along E". This defines
a continuous Riemannian metric ¢’ on TW’ for which holonomies of W* between W’
leaves are isometries. Moreover, since the leaves of WW?* are uniformly C'*°, so are the
leaves of W', and hence ¢’ is uniformly C*° on the leaves of W. Then g = ¢;'(¢')
defines a continuous Riemannian metric on TW?* which is uniformly C'*° along the
leaves of W?* and with respect to which the holonomies of W*" are isometries.

We note that for each z the isometries of (W?*(z),g) are C* diffeomorphisms of
W?(x) and form a finite dimensional Lie group G,. Since we have that the holonomies
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of W*" are isometries, repeating the holonomy argument as in the proof of Theorem
, we see that h|yys(y) conjugates the action of E® by translations of W*(h(x)) to a
continuous action of £* by isometries in G,. This yields that hlyys(,) are uniformly C*°
diffeomorphisms.

9. PROOF OF THEOREM

(1) = (2,3,4) is clear.

(3) = (2) Let 0 < p < 1 be the largest absolute value of eigenvalues of L on E**
and 0 < p/ < 1 be the smallest absolute value of eigenvalues of L on E™*. Then if f is
Cl-close to L and y € W**(x) then dist(f"x, f*y) < C(p+ )" for all n € N. If h is
a-Holder then for all n € N

dist(L"h(x), L"h(y)) = dist(h(f"x), h(f™y)) < C'dist(f"z, fMy)* < C'C(p + &)™

If « is sufficiently close to 1 so that (p +¢)* < p/, this implies that h(y) € W**(h(z))
and thus h(W?**(z)) C W*¥(h(x)). Since h is a homeomorphism, h(W?**(z)) contains
an open ball in W**(h(z)), and then iterating by f yields h(W?**(z)) = W**(h(x)).

(4) = (2) under the density of leaves assumption for Lyapunov subfoliations of
Wwstwe follows from Theorem [1.1](4) = (1) applied to f for W** and to f~! for
Wwtvielding h(W**) = W5 and h(W**) = W"* respectively.

(2) = (1). Applying Theorem [1.1](1) => (3) we obtain that the bundle £“*** is
C®°. Similarly using f~! we obtain that £t is ¢ and hence so is the intersection
gstuungutss — gsstuu GQince £55T4 and EWSTWY are symplectic orthogonal, we conclude
that £¥5T*" and hence the corresponding foliation W¥st*% are C*°. This is the only
place where we use that f preserving a C* symplectic form. Since the foliation YWwstw«
is C*°, by intersecting it with WW* and W" we obtain that W™ and W"* are their
respective uniformly C* subfoliations. Thus we obtain that Theorem [L.5{1) is satisfied
for both f and f~! and hence yields (2') in each case. Combining them we conclude
that h = h® + h* is in C*°(T9) with invertible derivative.
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