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Abstract. We consider a perturbation f of a hyperbolic toral automorphism L.
We study rigidity related to exceptional properties of the strong and weak stable
foliations for f . If the strong foliation is mapped to the linear one by the conjugacy h
between f and L, we obtain smoothness of h along the weak foliation and regularity
of the joint foliation of the strong and unstable foliations. We also establish a similar
global result. If the weak foliation is sufficiently regular, we obtain smoothness of the
conjugacy along the strong foliation and regularity of the joint foliation of the weak
and unstable foliations. If both conditions hold then we get smoothness of h along
the stable foliation. We also deduce a rigidity result for the symplectic case. The
main theorems are obtained in a unified way using our new result on relation between
holonomes and normal forms.

1. Introduction

In this paper we consider a perturbation f of a hyperbolic toral automorphism L. We
study rigidity related to exceptional properties of the strong and weak stable foliations
for f . We recall that an automorphism L of Td is hyperbolic if the matrix has no
eigenvalues on modulus 1. We denote its stable and unstable subspaces by Es and Eu.

Let f be a C∞ diffeomorphism of Td which is C1 close to L. Then f is an Anosov
diffeomorphism, i.e., the tangent bundle of Td splits into a Df -invariant direct sum of
the stable and unstable subbundles Es and Eu, where

‖Df |Es‖ < 1 and ‖Df−1|Eu‖ < 1

for some Riemannian metric. Also, f is conjugate to L by a homeomorphism h, i.e.,

h ◦ f = L ◦ h.
The conjugacy close to the identity is unique, and it is bi-Hölder but usually not C1.
Any two conjugacies differ by an affine automorphism of Td commuting with L, and
hence they have the same regularity.

We denote the stable and unstable foliations for L by W s and W u, and for f by Ws

and Wu. The foliations Ws and Wu have uniformly C∞ leaves, but they are not even
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C1 foliations in general. A foliation is Cr if it has Cr local foliation charts. We say that
the leaves are uniformly Cr if locally they can be Cr embedded with the embeddings
varying continuously in the Cr topology. For a foliation W with uniformly Cr leaves,
we say that a function on Td is uniformly Cr along W if locally its restrictions to the
leaves are Cr and vary continuously in the Cr topology, see Section 4 for more details
and noninteger r.

We recall that the Lyapunov space for an exponent χ of L is the sum of generalized
eigenspaces of all eigenvalues of L with modulus eχ. If L has more than one stable
Lyapunov exponent, one can take a dominated splitting Es = Ess ⊕ Ews into strong
and weak parts by combining one or more Lyapunov spaces into each part. Since f
is C1 close to L, its stable subbundle also has the corresponding dominated splitting
C0-close to that of L:

(1.1) Es = Ess ⊕ Ews.

The bundle Ess is integrable to the strong foliation Wss, which has uniformly C∞

leaves and is a C∞ subfoliation of the leaves of Ws. The bundle Ews is also integrable
to the weak foliation Wws , but in general even the leaves of Wws are only uniformly
C1+Hölder. We always have h(Ws) = W s and h(Wws) = Wws by [G08], but usually not
h(Wss) = W ss. Our main goal is to explore what rigidity properties follow if assume
that h(Wss) = W ss or that Wws is sufficiently regular.

Let h be the conjugacy between L and f close to the identity. Then it can be written
as h(x) = x + ∆(x), where ∆ : Td → Rd. We will consider the components ∆∗ of ∆,
where ∗ = u, s, ss, ws, with respect to the splittings

Rd = Eu ⊕ Es = Eu ⊕ Ess ⊕ Ews.

We will also write h∗(x) = x∗ + ∆∗(x), which can be defined globally for the lift of h
to the universal cover Rd, or locally on Td. Thus the regularity of h∗ is well-defined.

First we consider the rigidity of a strong foliation.

Theorem 1.1 (Rigidity of a strong foliation). Let L be a hyperbolic automorphism of
Td with dense leaves of W ss. Let f be a C∞ diffeomorphism sufficiently C1 close to L,
and let h be a topological conjugacy between f and L. Then for the statements below
we have

(1) ⇐⇒ (2) ⇐⇒ (3) =⇒ (5) =⇒ (4).

Moreover, if the leaves of each of the Lyapunov subfoliations of Wws are dense in Td,
then the five statements are equivalent.

(1) h(Wss) = W ss,

(2) Wu and Wss are jointly integrable to a foliation Wu+ss,

(3) (2) holds and the foliation Wu+ss is conjugate to the linear foliation W u⊕W ss

by a C∞ diffeomorphism of Td,
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(4) h is a C1 diffeomorphism along the leaves of Wws, and
the derivative D(h|Wws(x)) : Ewsx → Rd is Hölder continuous on Td,

(5) hws is C∞ on Td, and if the leaves of Wws are uniformly Cq,
then h is a uniformly Cq diffeomorphism along Wws.

In Section 2.1 we give basic examples of perturbations f satisfying the assumptions of
Theorem 1.1, illustrating the regularity we obtain and necessity of the extra assumption
for the implications (4) =⇒ (5) and (4) =⇒ (1). Similar examples for subsequent
theorems are also included. Our results essentially recover the main features of the
basic models.

Remark 1.2 (Irreducibility conditions). A matrix L ∈ SL(d,Z) is called irreducible
if it has no nontrivial rational invariant subspaces or, equivalently, if its character-
istic polynomial is irreducible over Q. If L is irreducible, or more generally, weakly
irreducible, then all Lyapunov foliations for L have dense leaves, and hence the five
statements in Theorem 1.1 are equivalent. We define and discuss weak irreducibility in
Section 2.2.

Joint integrability of Wu and Wss plays an important role in the study of ergodic
properties of foliation Wss, and it is also related to the Lyapunov exponents on Ews.
It has been extensively studied, primarily on T3, see e.g. [ALOS, ACEPW, DR24,
GaSh20]. In higher dimensions, its relation to rigidity was considered by Gogolev and
Shi in [GSh23]. They proved that (1) ⇐⇒ (2) in general, and that (2) ⇐⇒ (4) under
the assumption that L is irreducible and has at most two-dimensional Lyapunov spaces.
Our assumptions on L are considerably weaker and we obtain stronger conclusions (3)
and (5). Our approach is completely different, it yields higher smoothness directly, and
does not rely on [GSh23] aside from (1) ⇐⇒ (2). Our techniques are mostly global,
but require narrow spectrum of Df |Ews to use normal forms.

Combining our techniques with the spectral rigidity for Df |Ews obtained in [GSh23]
we obtain the following global version of Theorem 1.1. The bunching assumption
(1.2) in the theorem means that nonconformality of Df on Ews is dominated by the
expansion on Eu, and is trivially satisfied if dim Ews = 1. A splitting Es = Ess ⊕ Ews
is called absolutely dominated if there exists 0 < ρ < 1 such that with respect to some
continuous family of Riemannian norms on Es we have

‖Df(u)‖ < ρ < ‖Df(v)‖ for all unit vectors u ∈ Ess and v ∈ Ews.
This condition automatically holds in the setting of Theorem 1.1.

Theorem 1.3 (Global rigidity of a strong foliation). Let L be an irreducible hyperbolic
automorphism of Td and let f be a C∞ Anosov diffeomorphism of Td conjugate to L
by a homeomorphism h. Suppose that f has an absolutely dominated splitting Es =
Ess ⊕ Ews and satisfies the bunching condition

(1.2) ‖Df |Ews(x)‖ · ‖(Df |Ews(x))−1‖ · ‖(Df |Eu(x))−1‖ < 1 for all x ∈ Td.
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Then the statements (1), (2), (3 ′), (4), (5) are equivalent, where (1), (2), (4), (5) are
as in Theorem 1.1 and (3 ′) is

(3′) Wu and Wss are jointly integrable to a C∞ foliation Wu+ss

whose holonomies preserve a Hölder continuous Riemannian metric on Ews.

Our approach also allows us to obtain rigidity related to regularity of the weak
foliation. We recall that h(Wws) = Wws, and henceWu andWws are jointly integrable
to the foliation Wu+ws = h−1(W u ⊕Wws) with uniformly C1+Hölder leaves.

Let rss(L) be the ratio of the top and bottom Lyapunov exponents of L on Ess, i.e.,

(1.3) rss(L) = (log ρmin)/(log ρmax) ≥ 1,

where 0 < ρmin ≤ ρmax < 1 are the smallest and the largest moduli of the eigenvalues
of L on Ess.

Theorem 1.4 (Rigidity of a weak foliation). Let L be a hyperbolic automorphism of
Td with dense leaves of Wws. Let f be a C∞ diffeomorphism sufficiently C1 close to
L, and let h be a topological conjugacy between f and L. If r > rss(L) and r /∈ N, then
the following are equivalent.

(1) Wws is a uniformly Cr subfoliation of Ws,

(2) hss is a uniformly C∞ diffeomorphism along Wss, and hss is Cr on Td,
(3) The joint foliation Wu+ws is conjugate to the linear foliation W u ⊕Wws by a

Cr diffeomorphism.

If in addition h(Wss) = W ss, then (1, 2, 3) =⇒ h is uniformly C∞ along Wss.

This theorem follows from a more general technical result, Theorem 7.1, where we
assume only regularity of the holonomies of Wws between the leaves of Wss, rather
than regularity of the subfoliation. The distinction is not assuming higher regularity
of the leaves of Wws, which in general are only C1+Hölder.

Combining rigidity of the weak and strong subfoliations, Theorems 1.1 and 1.4, we
obtain the following characterizations of smoothness of the conjugacy along Ws.

Theorem 1.5 (Rigidity of strong and weak foliations). Let L be a hyperbolic auto-
morphism of Td. Suppose that Wws and W ss have dense leaves. Let f be a C∞

diffeomorphism sufficiently C1 close to L, and let h be a topological conjugacy between
f and L. Then the following are equivalent.

(1) h(Wss) = W ss and Wws is a uniformly C∞ subfoliation of Ws,

(2) h a is uniformly C∞ diffeomorphism along Ws,

(2′) hs is in C∞(Td) and a diffeomorphism along Ws,

(3) Wu is conjugate to the linear foliation W u by a C∞ diffeomorphism.
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Symplectic case. Now we apply the above results to obtain rigidity results for sym-
plectic L and f .

Let L be a symplectic hyperbolic automorphism of Td with dominated splittings

(1.4) Es = Ess ⊕ Ews and Eu = Euu ⊕ Ewu

such that dimEss = dimEuu and hence dimEws = dimEwu. Here Euu and Ewu are
strong and weak unstable subbundles. Let f be a C1 small perturbation of L. Then f
has corresponding dominated splittings

Es = Ess ⊕ Ews and Eu = Euu ⊕ Ewu.

The subbundle Ews+wu is integrable with C1+Hölder leaves, and h(Wws+wu) = Wws+wu.

Theorem 1.6 (Symplectic rigidity). Let L be a symplectic hyperbolic automorphism
of Td. Suppose that the foliations Wws, W ss, Wwu, and W uu have dense leaves. Let
f be a C∞ diffeomorphism sufficiently C1 close to L and preserving a C∞ symplectic
form. Let h be a topological conjugacy between f and L. Then for the statements below
we have

(1) ⇐⇒ (2) ⇐⇒ (3) =⇒ (4).

Moreover, if the leaves of each of the Lyapunov subfoliations of Wws+wu are dense in
Td, then the four statements are equivalent.

(1) h is a C∞ diffeomorphism,

(2) h(Wss) = W ss and h(Wuu) = W uu,

(3) h is α-Hölder with α sufficiently close to 1,

(4) h is a C1 diffeomorphism along the leaves of Wws+wu, and the derivative
D(h|Wws+wu(x)) : Ews+wux → Rd is Hölder continuous on Td.

For an irreducible L with one-dimensional weak foliations, Gogolev and Shi showed
in the proof of [GSh23, Theorem 6.1] that joint integrability of Wuu and Wss implies
(2). Hence we obtain the following corollary, which extends [GSh23, Theorem 1.4] from
d = 4 to any d ≥ 4.

Corollary 1.7. Let L be an irreducible symplectic hyperbolic automorphism of Td
with splitting (1.4) such that dimEws = dimEwu = 1. Let f be a C∞ diffeomorphism
sufficiently C1 close to L and preserving a C∞ symplectic form. If the strong foliations
Wuu and Wss are jointly integrable then f is C∞ conjugate to L.

Remark 1.8 (Finite regularity). Our results hold if f is a Ct diffeomorphism rather
than C∞, provided that t is sufficiently large, and with the C∞ regularity of other
objects replaced by Ct−δ for any δ > 0. Theorems 1.1 and 1.3 require t > rws defined
similarly to (1.3). In particular, if L has one Lyapunov exponent on Ews then any t > 1
suffices. Theorem 1.4 requires t > r, Theorem 1.5 requires t > max{rws, rss}, Theorem
1.6 requires t > max{rwu, ruu, rws, rss}, and Corollary 1.7 requires t > max{ruu, rss}.
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These are the regularities needed to apply the results on normal forms. The proofs work
without any significant modifications.

Normal forms and holonomies. The proofs of the theorems above rely on our new
results of on normal forms and holonomies, which are of independent interest. We give
preliminaries on normal forms in Section 3 and formulate and prove the new results
in Section 4. In the context of two invariant transverse subfoliations W and V of Ws

we prove in Theorem 4.4 that if Df |TW has narrow spectrum and the holonomies of
V between W are sufficiently smooth then they preserve normal forms, i.e., they are
sub-resonance polynomials when written in normal form coordinates. This allows us
to use holonomies along V together with density of its leaves to obtain regularity of
the conjugacy along W . Prior results using normal forms with holonomies were in the
context of neutral foliations [FKSp11, GKS23] and they do not apply to expanding or
contracting foliations. We use our results with both W =Wss and W =Wws. In the
latter case, even existence of normal forms is nontrivial since the leaves are ofWws have
low regularity. We overcome this problem in Theorem 4.3 by using smooth holonomies
of V =Wss.

Structure of the paper. In Section 2 we give examples to illustrate the main the-
orems, and discuss irreducibility. In Section 3 we give preliminaries on normal forms,
and in Section 4 formulate and prove the new results. We prove Theorem 1.1 in Section
5, Theorem 1.3 in Section 6, Theorem 1.4 in Section 7, Theorem 1.5 in Section 8, and
Theorem 1.6 in Section 9.

2. Examples and weak irreducibility

2.1. Examples.

(i) We illustrate Theorem 1.1 in a basic setting of a hyperbolic automorphism of T3,
which is aways irreducible. Let L be a hyperbolic automorphism of T3 with eigenvalues

0 < λss < λws < 1 < λu,

and let ess, ews, and eu be corresponding unit eigenvectors. We consider a C1 small
perturbation f of L of the form

f(x) = L(x) + ϕu(x)eu + ϕss(x)ess,

where ϕu and ϕss are smooth real-valued functions on T3.
Then a conjugacy between f and L can be found in the form

h(x) = x+ φu(x)eu + φss(x)ess.

One can take smooth functions ϕu and ϕss for which the corresponding functions φu
and φss are not smooth, for example trigonometric polynomials as in [L92, Theorem
6.3] and [KtN, Theorem 5.5.5 and Remark 5.5.6].

For such a perturbation, the linear foliation W u+ss is preserved by f and h, and
hence Wu+ss = W u+ss = h(Wu+ss). While Wss 6= W ss, we have h(Wss) = W ss
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since Wss = Wu+ss ∩ Ws and h(Ws) = Ws. We see that while h is not smooth,
h(x)ws = xws and hence is smooth on Td. One can also see by differentiating term-wise
that φss(x) = −∑∞k=1 λ

k−1
ss ϕ(f−kx) has one derivative in the direction of ews. This

shows that h is C1 alongWws, which corresponds to (4) in Theorem 1.1. However, the
series for higher derivatives may diverge, and the bundle Ews is only Hölder in general.

(ii) One can modify this example to show that the implications (4) =⇒ (5) and (4) =⇒
(1) in Theorem 1.1 can fail without density of the Lyapunov leaves. We take an
automorphism

L = L1 × L2 of T5 = T3 × T2,

where L1 is as in (i), and L2 is an automorphism of T2 with eigenvalues 0 < µs < 1 <
µu = µ−1s and unit eigenvectors vs and vu. If µs < λws, we can take W ss for L as the
span of ess and vs and Wws as the span of ews. We consider the perturbation

f(x1, x2) = (L1(x1) + ϕ(x2)ews, L2(x2)).

Then the conjugacy can be written as h(x1, x2) = (x1 +φ(x2)ews, x2). Thus for a fixed
x2 the conjugacy is a translation on T3 in Wws direction, and hence (4) is satisfied. If
ϕ is taken so that φ is not C1 on T2 then component hws is not C1 on T3×T2. Thus (5)
fails and hence (1) has to fail too since (1) =⇒ (5). It can also be directly computed
as in [KtN, Remark 5.5.6] that h(Wss) 6= W ss.

(iii) In the setting of (i), we can similarly obtain perturbations satisfying the assump-
tions of the theorems below. Specifically,

f(x) = L(x) + ϕu(x)eu + ϕws(x)ess for Theorem 7.1,

f(x) = L(x) + ϕws(x)ess for Theorem 1.4, and

f(x) = L(x) + ϕu(x)eu for Theorem 1.5.

These examples illustrate the conclusions we get in these theorems.

2.2. Irreducibility and weak irreducibility.

We recall that L ∈ SL(d,Z) is irreducible if it has no nontrivial rational invariant
subspaces or, equivalently, if its characteristic polynomial is irreducible over Q. The
eigenvalues of an irreducible L are simple. Irreducibility of L implies that any L-
invariant linear foliation of Td is dense in Td.

A weaker assumption on L, called weak irreducibility, gives denseness of every Lya-
punov foliation for L. It was introduced and discussed in [KSW23], see Section 3.3
there. Let ρ1, . . . , ρm be distinct moduli of eigenvalues of L and let Eρ1 , . . . , Eρm be
the corresponding Lyapunov subspaces. We say that L is weakly irreducible if for each
i the space Êρi = ⊕j 6=iEρj contains non non-zero elements of Zd. Equivalently, there is
a set S ⊂ R so that for each irreducible over Q factor of the characteristic polynomial
of L the set of moduli of its roots equals S. A weakly irreducible L is not necessarily
diagonalizable.
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Lemma 2.1 (Weak irreducibility). A matrix L ∈ SL(d,Z) is weakly irreducible if and
only if for each Lyapunov foliation of L the leaves are dense in Td.

Proof. We will prove the equivalence to the second condition above. Let pL be the
characteristic polynomial of L and pL =

∏K
k=1 p

dk
k be its prime decomposition over Q.

Let S = {ρ1, . . . , ρm} be the set of moduli of roots for each pk. Suppose that for
some i the leaves of the Lyapunov foliation of W ρi are not dense in Td. Let E be the
minimal rational L-invariant subspace containing Eρi . Then E 6= Rd. We consider the
restriction B = L|E and the induced operator C on the quotient Rd/E. Then we have
pL = pB · pC , and all three are rational polynomials. Hence pC =

∏K
k=1 p

ck
k , and so by

the assumption pC has at least one root of modulus ρi. Then pL has more roots of
modulus ρi, counted with multiplicities, than the corresponding number for pB. This
is impossible since both should be dimEρi , as Eρi ⊂ E.

To prove the converse, assume that for each Lyapunov foliation of L the leaves are
dense in Td. Let S = {ρ1, . . . , ρm} be the set of moduli of roots of pL, and suppose that
for some ρi ∈ S and k0 ∈ {1, . . . , K} no root of pk0 has modulus ρi. Let Rd = ⊕Vk be

the splitting into rational L-invariant subspaces Vk = ker pdkk (L). As the eigenvalues of
L|Vk are the roots of pk, we nave Eρi∩Vk0 = 0. This implies that Eρi ⊂ ⊕k 6=k0Vk. Indeed
Eρi = ⊕k(Vk ∩ Eρi) since the splittings ⊕jEρj and ⊕kVk have a common refinement.
Since ⊕k 6=k0Vk is a rational L-invariant subspace smaller than Rd, we conclude that the
leaves of corresponding Lyapunov foliation W ρi are not dense in Td. �

3. Preliminaries on normal forms

3.1. Smooth extensions and sub-resonance polynomials. Let E be a continuous
vector bundle over a compact metric space M, let N be a neighborhood of the zero
section in E , and let f be a homeomorphism ofM. We consider an extension F : N →
E that projects to f and preserves the zero section. We assume that the corresponding
fiber maps Fx : Nx → Efx are Cr diffeomorphisms. We will consider r > 1, and for
r /∈ N we will understand Cr in the usual sense that the derivative of order N = brc is
Hölder with exponent α = r − brc.

We assume that the fibers Ex are equipped with a continuous family of Riemannian
norms. We denote by Bx,σ the closed ball of radius σ > 0 centered at 0 ∈ Ex. For
N ∈ N and 0 ≤ α < 1 we denote by CN+α(Bx,σ) = CN+α(Bx,σ, Efx) the space of
functions R : Bx,σ → Efx with continuous derivatives up to order N on Bx,σ and, if
α > 0, with α-Hölder N th derivative at 0.

Definition 3.1. We say that F is a CN+α extension of f , where N ∈ N and 0 ≤ α < 1,
if for some σ > 0 the fiber maps Fx : Bx,σ → Efx are CN+α diffeomorphisms which
depend continuously on x in CN topology with uniformly bounded norms ‖Fx‖CN+α(Bx,σ).

We say that ϕ = {ϕx}x∈X , where ϕx : Bx,σ → Efx, is a CN+α coordinate change if
it is a CN+α extension of the identity map on M preserving the zero section.
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For a smooth extension F we will denote by F its derivative of at the zero section,
i.e. F : E → E is a continuous linear extension of f whose fiber maps are linear
isomorphisms Fx = D0Fx : Ex → Efx.

Definition 3.2. Let ε > 0 and let

(3.1) χ = (χ1, . . . , χ`), where χ1 < · · · < χ` < 0.

We say that a linear extension F has (χ, ε)-spectrum if there is a continuous F -
invariant splitting

(3.2) E = E1 ⊕ · · · ⊕ E `

and a continuous family of Riemannian norms ‖.‖x on Ex such that

(3.3) eχi−ε‖t‖x ≤ ‖Fx(t)‖fx ≤ eχi+ε‖t‖x for every t ∈ E ix

and the splitting (3.2) is orthogonal.

We say that a map between vector spaces is polynomial if each component is given
by a polynomial in some, and hence every, basis. We will consider a polynomial map
P : Ex → Ey with P (0x) = 0y and split it into components (P1(t), . . . , P`(t)), where
Pi : Ex → E iy. Each Pi can be written uniquely as a linear combination of polynomials of

specific homogeneous types. A map Q : Ex → E iy has homogeneous type s = (s1, . . . , s`),
where s1, . . . , s` are non-negative integers, if for any real numbers a1, . . . , a` and vectors
tj ∈ E jx, j = 1, . . . , `, we have

(3.4) Q(a1t1 + · · ·+ a`t`) = as11 · · · a
s`
` ·Q(t1 + · · ·+ t`).

Definition 3.3. We say that a homogeneous type s = (s1, . . . , s`) for Q : Ex → E iy is

(3.5) sub-resonance if χi ≤
∑̀
j=1

sjχj.

We say that a polynomial map P : Ex → Ey is sub-resonance if each component Pi
has only terms of sub-resonance homogeneous types. We denote by Sx,y the set of all
sub-resonance polynomials P : Ex → Ey with P (0) = 0 and invertible derivative at 0.

Clearly, for any sub-resonance relation we have sj = 0 for j < i and
∑
sj ≤ χ1/χ`.

Hence sub-resonance polynomials have degree at most d(χ) = bχ1/χ`c.
We will denote Sx,x by Sx, which is a finite-dimensional Lie group group with respect

to the composition if ε > 0 is sufficiently small [GuKt98]. Any map P ∈ Sx,y induces
an isomorphism between Sx and Sy by conjugation. In particular, this holds for any
invertible linear map which respects the splitting (3.2).
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3.2. Normal forms for contracting extensions. The following theorem was estab-
lished in [GuKt98, Gu02] for r ∈ N ∪ {∞}, and in [K24] for this setting.

For a given χ as in (3.1), there is ε0 = ε0(χ) > 0 given by [K24, (3.13)] which ensures
that the spectrum is sufficiently narrow and will suffice for all results and proofs below.

Theorem 3.4. [K24, Theorem 4.3] (Normal forms for contracting extensions)
Let f : X → X be a homeomorphism of a compact metric space M, let E be a contin-
uous vector bundle over M, let N be a neighborhood of the zero section in E, and let
F : N → E be a Cr extension of f that preserves the zero section. Suppose that the
derivative F of F at the zero section has (χ, ε)-spectrum with χ1/χ` < r and ε < ε0.

Then there exists a Cr coordinate change ϕ = {ϕx}x∈X with diffeomorphisms ϕx :
Bx,σ → Ex satisfying ϕx(0) = 0 and D0ϕx = Id which conjugates F to a continuous
polynomial extension P : E → E of f of sub-resonance type, i.e.,

(3.6) ϕfx ◦ Fx = Px ◦ ϕx, where Px ∈ Sx,fx for all x ∈ X.

If F is a C∞ extension then the coordinate change ϕ is also C∞.

Any two such coordinate changes ϕx and ϕ′x satisfy ϕ′x = ϕx ◦ gx for some gx ∈ Sx.

4. Normal forms for contracting foliations

Let f be a Cr diffeomorphism of a compact manifoldM, where r = N +α. We will
consider an f -invariant continuous foliationW of X with uniformly Cr leaves. By this
we mean that for someR > 0 the ballsBW(x,R) of radiusR in the intrinsic Riemannian
metric of the leaf can be given by Cr embeddings which depend continuously on x in CN

topology and, if r /∈ N, have α-Hölder derivative of order N with uniformly bounded
Hölder constant. Similarly, for such a foliation we will say that a function g is uniformly
Cr along W if its restrictions to BW(x,R) depend continuously on x in CN topology
and have α-Hölder derivative of order N with uniformly bounded Hölder constant. We
also allow r =∞, in which case uniformly C∞ means uniformly CN for each N .

Definition 4.1 (Normal forms on a contracting foliation).
Let f be a C1 diffeomorphism of a compact manifold M, and let E be a continuous
f -invariant subbundle of TM tangent to an f -invariant topological foliation W with
uniformly C1 leaves. Suppose that the linear extension F = Df |TW has (χ, ε)-spectrum.

We say that a family {ϕx}x∈M of C1 diffeomorphisms ϕx : Wx → TxW, which
depend continuously on x in C1 topology, is a normal form for f on W if for each
x ∈M we have ϕx(0) = 0 and D0ϕx = Id ,

Px = ϕfx ◦ f ◦ ϕ−1x : TxW → Tf(x)W is in Sx,fx,

and for any y ∈ Wx the map ϕy◦ϕ−1x : TxW → TyW is a composition of a sub-resonance
polynomial in Sx,y with a translation.
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IdentifyingW(x) with TxW by ϕx we can view the transition maps ϕy ◦ϕ−1x as maps
of TxW and see that they are in the finite-dimensional group S̄x generated by Sx and
the translations of TxW .

In Theorems 1.4 and 7.1 we will use normal forms for f on W = Wss. In this case
the leaves ofW are uniformly C∞, so we can obtain a natural uniformly C∞ extension
of f by locally identifying TxW with W(x) and apply Theorem 3.4. The following
theorem yields a normal form for f on W = Wss, which is uniformly C∞. The proof
that ϕy ◦ ϕ−1x ∈ S̄x is given in [KS16, KS17].

Theorem 4.2. [K24, Theorem 4.6] (Normal forms for foliations with Cr leaves)
Let f be a Cr, r ∈ (1,∞], diffeomorphism of a compact manifold M, and let W be
an f -invariant topological foliation of M with uniformly Cr leaves. Suppose that the
linear extension F = Df |TW has (χ, ε)-spectrum with χ1/χ` < r and ε < ε0. Then
there exists a normal form for f on W such that ϕx : Wx → TxW are uniformly Cr

diffeomorphisms.

4.1. Normal forms on C1 leaves. In Theorem 1.1 we will use normal forms for f
on W =Wws. In general, the leaves of W =Wws are only C1+Hölder and so the above
result may not apply. In this case we construct the normal form using the next theorem
and smoothness of Wss inside Ws. The latter yields that holonomies of Wss are C∞,
between C∞ transversals to Wss inside Ws.

Theorem 4.3. (Normal forms for foliations with C1 leaves)
Let f be a Cr diffeomorphism of a compact manifold M. Let U be an f -invariant
topological foliation of M with uniformly Cr leaves. Let W and V be f -invariant
topological subfoliations of U with uniformly C1 leaves transverse in the leaves of U ,
i.e., TxU = TxW ⊕ TxV for each x ∈M.

Suppose that the holonomies H of V inside U are uniformly Cr, and Df |TW has
(χ, ε) spectrum χ1/χ` < r and ε < ε0. Then there is a normal form {ϕx} for f on W
such that for any x ∈M and any y ∈ V(x) the lifted holonomy maps

(4.1) H̄x,y = ϕy ◦ Hx,y ◦ ϕ−1x : TxW → TyW
are Cr diffeomorphisms, uniformly in x and y.

Proof. To construct the normal form we need to define a Cr extension F that corre-
sponds to the restriction of f to the leaves of W . Since the leaves of W are only C1,
we use the action of f transversally to V inside U to define F . More precisely, for
any x ∈ M we identify in a uniformly Cr way a small ball Bρ(x) in TxW with a Cr

submanifold of U(x) tangent to TxW at x. Thus we obtain a uniformly Cr family Tx
of transversals to V inside U :

(4.2) ix : TxW ⊃ Bρ(x)→ U(x), ix(Bρ) = Tx, Dxix = Id.

Using these transversals we consider the following holonomy maps of V :

(4.3) Hx : Tx →W(x) and H̃fx : f(Tx)→ Tfx.
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We note that H̃fx is uniformly Cr by the assumption on holonomies of V since f(Tx)
and Tfx are uniformly Cr transversals, but Hx is only uniformly C1 asW(x) is assumed
only C1. Using these maps and the identifications ix we define the Cr extension of f

Fx = i−1fx ◦ H̃fx ◦ f |Tx ◦ ix = (Hfx ◦ ifx)−1 ◦ f |W(x) ◦ (Hx ◦ ix) : TxW → TfxW .

In fact, the maps Hx ◦ ix give an atlas of local coordinates on the leaves of W with Cr

transition maps. This gives W(x) a structure of Cr manifold, which is C1 consistent
with the submanifold structure. We will denote by W̃(x) the leaf equipped with this
Cr structure. With respect to it, the restriction of f to each leaf, fx : W̃(x)→ W̃(fx),
becomes uniformly Cr, as in these local coordinates it coincides with the extension Fx.

Now this setting becomes essentially the same as in the case of Cr leaves. Theorem
3.4 gives normal form coordinates ϕ̂x : TxW → TxW for the extension F and hence

(4.4) ϕx = ϕ̂x ◦ (Hx ◦ ix)−1 : W(x)→ TxW

is a normal form for f onW , moreover ϕx ∈ Cr(W̃(x), TxW). The proof that ϕy◦ϕ−1x ∈
S̄x is the same as in [KS16, KS17].

For any y ∈ V(x), the holonomies of V between the transversals H̃x,y : Tx → Ty are
uniformly Cr and are related to the holonomies between the leavesHx,y :W(x)→W(y)

by H̃x,y = H−1y ◦Hx,y◦Hx. By the construction of ϕ this yields that the lifted holonomies

H̄x,y are also uniformly Cr, since

(4.5) H̄x,y = ϕy ◦ Hx,y ◦ ϕ−1x = ϕ̂y ◦ i−1y ◦ H̃x,y ◦ ix ◦ ϕ−1x : TxW → TyW .

Even though the holonomies Hx,y : W(x) → W(y) are only C1, the holonomies

Hx,y : W̃(x)→ W̃(y) are Cr. �

In the setting of the previous theorem, we formulate our main technical result on
relationship between holonomies and normal forms. We will apply this theorem with
U =Ws to both (V ,W) = (Wss,Wws) and (V ,W) = (Wws,Wss) .

Theorem 4.4 (Holonomy invariance of normal forms). In addition to the assumptions
of Theorem 4.3, suppose that the foliation U is contracted by f , i.e., ‖Df |TU‖ < 1 for
some metric. Then for any x ∈ M and y ∈ V(x) the lifted holonomy map (4.1) is a
sub-resonance polynomial, i.e., H̄x,y ∈ Sx,y.

4.2. Proof of Theorem 4.4.
We denote TW by E and let E = E1 ⊕ · · · ⊕ E ` be the invariant splitting for Df |E .

First we show that the derivative DHx,y = DH̄x,y : Ex → Ey preserves the flag of
strong subbundles, i.e., for each k = 1, . . . , `,

DHx,y(E1,kx ) ⊆ E1,ky , where E1,k = E1 ⊕ · · · ⊕ Ek.

Since the foliations W and V are f -invariant, we have the commutation relation

(4.6) fn ◦ Hx,y = Hfnx,fny ◦ fn : Wx →Wfny.
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Differentiating this relation we obtain

Dfn|Ey ◦DHx,y(x) = DHfnx,fny(f
nx) ◦Dfn|Ex : Ex → Ey.

We consider a non-zero vector u ∈ Ekx and let j be largest index so that the j component
of v = DHx,y(x)u is non-zero. We need to show that j ≤ k. Suppose that j > k and
hence χk + ε < χj − ε since ε < ε0. Then we obtain a contradiction as follows. First
we have

‖Dfn|Ey ◦DHx,y(x)u‖ = ‖Dfnv‖ ≥ e(χj−ε)n‖vj‖.
On the other hand,

‖DHfnx,fny(f
nx) ◦Dfn|Exu‖ ≤ ‖DHfnx,fny(f

nx)‖ · ‖Dfn|Exu‖ ≤ Ce(χk+ε)n‖u‖,

since ‖DHfnx,fny(f
nx)‖ is uniformly bounded in n as distV(fnx, fny) decreases. This

is impossible for large n since χk + ε < χj − ε. Therefore DHx,y preserves the flag.

We take arbitrary x ∈M and y ∈ V(x) and consider the lifted holonomy (suppressing
the bar in this proof)

Hx,y = H̄x,y = ϕy ◦ Hx,y ◦ ϕ−1x : Ex → Ey.

We write its Taylor polynomial of degree M = brc at 0 ∈ Ex as

TM(Hx,y)(t) =
M∑
m=1

H(m)
x,y (t) : Ex → Ey,

where H(m)
x,y : Ex → Ey is a homogeneous polynomial of degree m. Now we show

inductively that this Taylor polynomial contains only sub-resonance terms. Writing fn

in normal form coordinates we have

ϕfnx ◦ fn|W(x) ◦ ϕ−1x = Pnx : Ex → Efnx,

where the polynomial map Pnx (t) =
∑d
m=1 P

(m)
x (t) contains only sub-resonance terms

and in particular has degree at most d = bχ1/χ`c ≤ M . With similar notations for y,
the commutation relation (4.6) becomes

(4.7) Hfnx,fny ◦ Pnx = Pny ◦Hx,y : Ex → Efny.

We already proved that the first derivative H(1)
x,y = DxHx,y preserves the strong flag,

which means exactly that it is a sub-resonance linear map.
Inductively, we assume that H(m)

x,y has only sub-resonance terms for all x ∈ M,

y ∈ Vx, and m = 1, . . . , k − 1 and show that the same holds for H(k)
x,y . We split

H(k)
x,y = Sx,y +Nx,y

into the sub-resonance part and the rest. It suffices to show that Nx,y = 0 for all
y ∈ Wx that are sufficiently close to x. Assuming the contrary, we fix such x and y
with Nx,y 6= 0. We will write Nx for Nx,y and Nfnx for Nfnx,fny. We consider the Taylor
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terms of order k in the commutation relation (4.7). They come from the compositions
of the respective Taylor polynomials

M∑
j=1

H
(j)
fnx,fny

(
d∑

m=1

P (m)
x (t)

)
and

d∑
m=1

P (m)
y

Ñ
M∑
j=1

H(j)
x,y(t)

é
.

By the inductive assumption, Nx and Nfnx are the only non sub-resonance terms of
order k in these polynomials, and all lower order terms are sub-resonance. Since any
composition of sub-resonance terms is again sub-resonance, taking non sub-resonance
terms of order k on both sides yields the equation

(4.8) Nfnx

Ä
P (1)
x (t)

ä
= P (1)

y (Nx(t)) .

We decompose Nx into components Nx = (N1
x , . . . , N

`
x) and let i be the largest index

such that N i
x 6= 0, i.e., there exists t′ ∈ Ex so that z = N i

x(t
′) ∈ Ey has component

0 6= zi ∈ E iy. We denote

(4.9) w = P (1)
y (z) = DPny (0)z = Dfn(y)z ∈ Efny and wi = Dfn(y)zi ∈ E ifny

its ith component. Then

(4.10) ‖wi‖ ≥ Cen(χi−ε),

where the constant C = ‖zi‖ does not depend on n.

Now we estimate from above the ith component of Nfnx(P
(1)
x (t′)). First,

‖P (1)
x (t′j)‖ = ‖Dfn(x) t′j‖ ≤ ‖t′‖ en(χj+ε) for any j.

Let N s
fnx be a term of homogeneity type s = (s1, . . . , s`) in the component N i

fnx. By
homogeneity, its norm can be estimated as

‖N s
fnx

Ä
P (1)
x (t′)

ä
‖ ≤ ‖Nfnx‖ · ‖t′‖k · en

∑
sj(χj+ε).

Since no term in N i
fnx is a sub-resonance one, we have χi >

∑
sjχj and hence, since

ε < ε0, we also have χi >
∑
sjχj + (n + 2)ε. Then the left side of (4.8) at t′ can be

estimated as

‖N s
fnx

Ä
P (1)
x (t′)

ä
‖ ≤ C ′en(χi−2ε),

where the constant C ′ does not depend on n since the norms of H
(k)
fnx,fny, and hence

those of Nfnx, are uniformly bounded. This contradicts (4.10) for large n.

Thus we have shown that TM(Hx,y), the Taylor polynomial of degree M for Hx,y at
0 ∈ Ex, contains only sub-resonance terms for all x ∈ M and y ∈ V(x). It remains to
show that Hx,y coincides with TM(Hx,y).

In addition to (4.7), the same commutation relation holds for the Taylor polynomials

(4.11) TM(Hfnx,fny) ◦ Pnx = Pny ◦ TM(Hx,y).
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Indeed, the two sides must have the same terms up to order M , but they are sub-
resonance polynomials and thus have no terms of order higher than d ≤M . Denoting

∆n = Hfnx,fny − T (Hfnx,fny)

we obtain from (4.7) and (4.11) that

(4.12) Pny ◦Hx,y − Pny ◦ TM(Hx,y) = ∆n ◦ Pnx .

We denote

∆ = Hx,y − TM(Hx,y) : Ex → Ey
and suppose that ∆ 6= 0 for some x, y. Let i be the largest index for which the ith
component of ∆ is nonzero. Then there exist arbitrarily small t′ ∈ Ex such that the
ith component zi of z = ∆(t′) is nonzero. Since Pny is a sub-resonance polynomial, the
nonlinear terms in its ith component can depend only on j components of the input
with j > i, which are the same for Hy,x and T (Hx,y) by the choice of i. The linear part
of Pny is Dfn(y) and it preserves the splitting. Thus the ith component of the left side
of (4.12) at t′ is Dfn(y)zi. So we can estimate the left side of (4.12) at t′

(4.13) ‖(Pny ◦Hx,y − Pny ◦ T (Hx,y))(t
′)‖ ≥ ‖Dfn(y)zi‖ ≥ en(χi−ε)‖zi‖ ≥ en(χ1−ε)‖zi‖.

Now we estimate the right side of (4.12). Since Hfnx,fny is CM+α, there exists a
constant C determined by ‖Hfnx,fny‖CM+α such that

(4.14) ‖∆n(t)‖ ≤ C‖t‖M+α for all t ∈ Efnx with ‖t‖ ≤ δ

for a sufficiently small δ > 0. This C can be chosen uniform in n and close x, y.
Also, for a sufficiently small δ > 0 we can estimate Pnx as

(4.15) ‖Pnx (t)‖ ≤ en(χ`+2ε)‖t‖ for all n ∈ N and ‖t‖ < δ.

This follows from the fact that for all x ∈M we have

‖D0Px‖ = ‖Df |Ex‖ ≤ eχ`+ε and hence ‖DtPx‖ ≤ eχ`+2ε

for all points t ∈ Ex with ‖t‖ ≤ δ for a sufficiently small δ > 0. Hence Px is a
eχ`+2ε-contraction on the δ ball in each Ex, and (4.15) follows.

Combining (4.14) and (4.15) we estimate the right side of (4.12) at t′ as

‖ (∆n ◦ Pnx ) (t′)‖ ≤ C‖Pnx (t′)‖M+α ≤ C‖t′‖M+αen(M+α)(χ`+2ε).

Now we see that this contradicts (4.13) for large n since (M + α)χ` = rχ` < χ1 and
since ε < ε0 is sufficiently small. Thus, ∆ = 0, i.e., the holonomy map Hx,y coincides
with its Taylor polynomial of order M . This completes the proof of Theorem 4.4.
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5. Proof of Theorem 1.1

We first note that
(3) =⇒ (2) is clear, and
(1) =⇒ (2) holds since we always have h(Wu) = W u

and hence the joint foliation for Wu and Wss is h−1(W u ⊕W ss).
The converse (2) =⇒ (1) is part of [GSh23, Theorem 1.1].

Next we prove that
(1) =⇒ (5) =⇒ (4) and
(1) =⇒ (3), more precisely (5)+(2) =⇒ (3).

Finally we show (4) =⇒ (1) under the assumption on density of Lyapunov leaves.

(1) =⇒ (5). We assume that h(Wss) = W ss. We apply Theorems 4.3 and 4.4 with
U =Ws, W =Wws and V =Wss, and denote Ews = TWws. Since f is C1 close to L,
the linear extension Df |Ews has the corresponding (χ, ε) spectrum with small ε. Since
Wss is a C∞ subfoliation inside the leaves of Ws, Theorems 4.3 applies and yields the
normal form coordinates ϕx on Wws given by equation (4.4)

ϕx : Wws(x)→ Ewsx .

The maps ϕx are C1 diffeomorphisms which depend continuously on x in C1 topology.
Further, Theorem 4.4 yields that the holonomies H = Hss of Wss inside Ws between
leaves of Wws are sub-resonance polynomials in these coordinates (4.1), i.e.,

H̄x,y = ϕy ◦ Hx,y ◦ ϕ−1x : Ewsx → Ewsy is in Sx,y.

Since h(Wss) = W ss and h(Wws) = Wws, the two foliations form a global product
structure inside the leaves ofWs conjugate by h to that of the linear foliations. In par-
ticular, the holonomies H are globally defined on the leaves ofWws. The corresponding
linear holonomies H for L are translations along W ss:

if y ∈ W ss(x) then Hx,y(z) = z + (y − x),

and h conjugates H and H as follows

Hh(x), h(y) = h ◦ Hx,y ◦ h−1.

We fix an arbitrary x ∈ Td and y ∈ Wws(x). By the assumption, the linear leaf
W ss(x) is dense in Td. Hence there exists a sequence of vectors vn ∈ Ess such that
h(x) + vn converges to h(y). Denoting yn = h−1(h(x) + vn) we obtain a sequence of
points yn ∈ Wss(x) converging to y.

The corresponding linear holonomies Hvn = Hh(x), h(yn) converge in C0 to the trans-
lation Hv in Wws(h(x)) by the vector v = h(y) − h(x). Hence the holonomies Hx,yn

converge in C0 norm to the homeomorphism

Hv :Wws(x)→Wws(y) =Wws(x) such that Hv = h ◦ Hv ◦ h−1.
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Since the normal form coordinates ϕy depend continuously on y, the corresponding
lifted holonomies H̄x,yn = ϕyn ◦ Hx,yn ◦ ϕ−1x ∈ Sx,yn converge to the homeomorphism

Px,y = ϕy ◦ Hv ◦ ϕ−1x = ϕy ◦ h−1 ◦Hv ◦ h ◦ ϕ−1x : Ewsx → Ewsy .

The map Px,y is also a sub-resonance polynomial, i.e., Px,y ∈ Sx,y.
Now we lift the restriction of h to Wws(x) to Ex using coordinates ϕx

h̄x = h ◦ ϕ−1x : Ewsx → Wws(h(x)),

and conjugate by h̄x the translation Hv of Wws(h(x)) to the corresponding map of Ex
H̄v = (h̄x)

−1 ◦Hv ◦ h̄x = ϕx ◦ h−1 ◦Hv ◦ h ◦ ϕ−1x = ϕx ◦ ϕ−1y ◦ Px,y : Ewsx → Ewsx .

By the property of normal form coordinates, the map ϕx ◦ ϕ−1y : Ewsy → Ewsx is a
composition of a sub-resonance polynomial in Sy,x with a translation of Ewsx . Since Px,y
is a sub-resonance polynomial in Sx,y, we conclude that H̄v ∈ S̄x, the finite dimensional
Lie group generated by Sx and the translations of Ex. Thus h̄x conjugates the action of
Ews = Rk by translations of Wws(h(x)) with the corresponding continuous action of Rk

by elements of the Lie group S̄x. This yields the injective continuous homomorphism

ηx : Ews → S̄x given by ηx(v) = H̄v = (h̄x)
−1 ◦Hv ◦ h̄x.

It is a classical result that a continuous homomorphism between Lie groups is automat-
ically a Lie group homomorphism, and so it is automatically C∞, see for example [Ha,
Corollary 3.50]. Thus ηx is a C∞ diffeomorphism onto its image in S̄x. We conclude
that (h̄x)

−1 is a C∞ diffeomorphism between Wws(h(x)) and Ewsx since it is determined
by ηx as follows

(h̄x)
−1(h(x) + v) = H̄v(0) = ηx(v)(0).

Hence h̄x : Ewsx → Wws(h(x)) is also a C∞ diffeomorphism. Further, since the normal
form coordinates ϕx, as well as holonomies and their limits, depend continuously on
x, the constructed continuous action on Ewsx and the corresponding homomorphism ηx
also depend continuously on x. This implies that ηx depend continuously on x in C∞

topology, because it is determined by the corresponding linear homomorphism of the
Lie algebras. This yields that h̄x : Ewsx → Wws(h(x)) also depends continuously on x
in C∞ topology. We conclude that the restriction of h to Wws(x)

h|Wws(x) = h̄x ◦ ϕx : Wws(x)→ Wws(h(x))

is as regular as ϕx. If the leaves of Wws are uniformly Cq, then so are the maps ϕx
given by (4.4) since the holonomy Hx from a smooth transversal to the leaf Wws(x) is
as regular as the leaves. Hence in this case h|Wws(x) is a uniformly Cq diffeomorphism.
In particular, since the leaves of Wws at least uniformly C1+Hölder, h|Wws(x) is at least
a uniformly C1+Hölder diffeomorphism.

To complete the proof of (5) we will now show that the component hws is C∞ on Td.
First, hws is (locally) constant along Wu+ss and hence is uniformly C∞ along it, since
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its leaves are uniformly C∞. By Journe lemma [J88],[KtN, Theorem 3.3.1] it suffices
to show that hws is also uniformly C∞ along smooth transversals to Wu+ss.

As in the construction of normal forms onWws we consider the embeddings of small
balls Bws

ρ (x) in Ewsx as a local family of smooth transversals (4.2) and denote

ix : Bws
ρ (x)→Ws, ix(B

ws
ρ (x)) = Tx, Hx = HWss

x : Tx →Wws(x).

We recall that the normal form coordinates (4.4) are given by

ϕx = ϕ̂x ◦ (Hx ◦ ix)−1 : Wws → Ewsx ,

where ϕ̂x : Ewsx → Ewsx is the uniformly C∞ coordinate change for the extension Fx.
Since we know that both h̄x and ix◦(ϕ̂x)−1 are uniformly C∞ diffeomorphism and since

h̄x = h ◦ (ϕx)
−1 = h ◦ Hx ◦ ix ◦ (ϕ̂x)

−1 : Ewsx → Wws(hx)

we conclude that h ◦ Hx : Tx → Wws(hx) is also uniformly C∞, and in particular so
is its ws-component. We claim that (h ◦ Hx)

ws = (h|Tx)ws. Indeed, for any y ∈ Tx
we have Hx(y) ∈ Wss(y) and, since h(Wss) = W ss, we get h(Hx(y)) ∈ W ss(h(y)) and
thus they have the same ws-component. Therefore, (h|Tx)ws = hws|Tx is uniformly C∞

along this family of transversals to Wu+ss, and we conclude that hws is C∞ on Td.
This concludes the proof of (1) =⇒ (5).

(5) =⇒ (4). Since (5) yields that h|Wws(x) is a C1 diffeomorphism, it remains to
show that its derivative is Hölder on Td. Since h maps Wws(x) to the linear leaf
Wws(h(x)), this derivative coincides with the restriction of the derivative of hws,

D(h|Wws(x))(x) = D(hws|Wws(x))(x) = D(hws)|Ews(x) : Ewsx → Ews ⊂ Rd.

Since hws is C∞ on Td by (5), this restriction is as regular as the subbundle Ewsx , and
so at least Hölder continuous on Td.

(1) =⇒ (3). Since (1) implies (2), we have the joint topological foliation Wu+ss =
h−1(W u ⊕ W ss). Now we use (5), which follows from (1), to show that Wu+ss is
conjugate to the linear foliation W u ⊕W ss by a C∞ diffeomorphism. We take h to be
the conjugacy close to the identity and write

h(x) = x+ ∆(x) = x+ ∆ws(x) + ∆u+ss(x),

where ∆ : Td → Rd is split into components ∆ws : Td → Ews and ∆u+ss : Td →
Eu ⊕ Ess. Now we consider the map

h̃(x) = h(x)−∆u+ss(x) = x+ ∆ws(x) : Td → Td.

We note that both h and h̃ are C0 close to the identity. The first formula shows that
h̃ is an adjustment of h along W u ⊕W ss and thus, since h(Wu+ss) = W u ⊕W ss, we

also have that h̃(Wu+ss) = W u ⊕W ss. Now we show that h̃ is a C∞ diffeomorphism
of Td, and hence it smoothly conjugates Wu+ss to W u ⊕W ss. We can locally write

h̃(x) = x+ ∆ws(x) = xu+ss + xws + ∆ws(x) = xu+ss + hws(x).
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While the components hws, xu+ss, and xws are globally well-defined only for the lifts to
Rd, they make sense locally on Td. By (5), the component hws is C∞ on Td and hence so

is h̃. Thus to prove that h̃ is locally a C∞ diffeomorphism it suffices to show invertibility
of its derivative. We view Dh̃ with respect to splittings Ewsx ⊕ Eu+ssx → Ews ⊕ Eu+ss.

Since hws is constant alongWu+ss and a C1 diffeomorphism alongWws we see that Dh̃
is block triangular with invertible block Ewsx → Ews. Now invertibility of Dh̃ follows
from that of the other diagonal block D(xu+ss)|Eu+ssx

. The latter is clear since Eu+ssx is
transverse to Ews and thus the derivative of xu+ss, which is just Eu+ss-component of
the identity, has full rank on Eu+ssx . The global surjectivity and injectivity of h̃ also
follow now since it is C0 close to the identity. This concludes the proof of (1) =⇒ (3).

(4) =⇒ (1) if the leaves of W 1, . . . ,W ` are dense in Td.
Since f is C1 close to L, the linear extension Df |Ews has the corresponding (χ, ε)

spectrum and the Hölder continuous splitting

(5.1) Ews = E1 ⊕ · · · ⊕ E `

which is C0 close to the Lyapunov splitting for L on Ews. We recall that E1 is the
strongest and E ` is the weakest. We let

E i,ss = E i ⊕ · · · ⊕ E1 ⊕ Ess.
Since E i,ss is a strong subfbundle of Es, it is tangent to a C∞ subfoliation W i,ss inside
Ws. Since we assume that h|Wws(x) is a C1 diffeomorphism, each bundle E i is tangent
to the foliation W i = h−1(W i). The implication (4) =⇒ (1) follows from the next
proposition.

Proposition 5.1. Assume that h is a C1 diffeomorphism alongWws with the derivative

D(h|Wws(x))(x) : Ewsx → Ews ⊂ Rd Hölder continuous on Td.
If h(W i,ss) = W i,ss then h(W i−1,ss) = W i−1,ss.

We apply the proposition inductively from i = ` to i = 1. For i = `, the assumption
h(W i,ss) = W i,ss is satisfied since it is h(Ws) = W s. For i = 1 we obtain (1).

The proof of this proposition is similar to that of [GKS11, Proposition 2.5]. However,
in [GKS11] the automorphism L was assumed to be irreducible, while we only assume
density of the leaves of W ss and the Lyapunov subfoliations of Wws.

Proof of Proposition 5.1. We will use the following notation in this proof:

W = W i, V = W i−1,ss, U = W ⊕ V = W i ⊕W i−1,ss = W i,ss,

and similarly for the corresponding nonlinear invariant foliations of f ,

W =W i, V =W i−1,ss, U =W ⊕W =W i,ss.

By the assumption, h(U) = U . We let Ṽ = h(V). Then Ṽ is a subfoliation of U with
continuous leaves. We need to show that Ṽ = V . Since W = h(W), the foliation Ṽ is
topologically transverse to W , i.e., any leaf of Ṽ and any leaf of W in the same leaf of
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U intersect at exactly one point. Thus for any point a ∈ Td and any b ∈ Ṽ (a) we can
define the holonomy map H̃a,b : W (a) → W (b) along the foliation Ṽ . The key step is

to show that H̃a,b a parallel translation inside U . This is similar to [GKS11, Lemma
2.6], but in [GKS11] the automorphism L was assumed to be irreducible, which yields
conformality of L on W . We modify the argument for the general case when Jordan
blocks may create nonconformality.

Lemma 5.2. For any point a ∈ Td and any b ∈ Ṽ (a) the holonomy map H̃a,b is a
restriction to W (a) of a parallel translation inside U .

Proof. For any point c ∈ Td and any d ∈ V(c) we denote by Hc,d : W(c) → W(d) the
holonomy along the foliation V . Since V is a strong subfoliation of U , it is C∞ inside
the leaves of U and hence the holonomies Hc,d are C1 with the derivative

DcHc,d : TcW → TdW

depending Hölder continuously on c and d. Since Ṽ = h(V) and h(W) = W we have

H̃a,b = h ◦ Hh−1(a),h−1(b) ◦ h−1.

It follows from the regularity assumption on h|Wws that the maps H̃a,b are also C1. To

show that H̃a,b is a parallel translation, we prove that the differential DH̃a,b = Id. We

apply Ln, which contracts U , and denote an = Ln(a) and bn = Ln(b). Since Ṽ = h(V)
and f preserves the foliation V , the map L preserves Ṽ and we can write

H̃a,b = L−n ◦ H̃an, bn ◦ Ln.

Differentiating and denoting DanH̃an,bn = Id + ∆n we obtain

DaH̃a,b = (L−n|W ) ◦ (DanH̃an,bn) ◦ Ln|W = Id + L−n|W ◦∆n ◦ Ln|W .
Since W is a Lyapunov foliation for L, all eigenvalues of L on W have the same modulus
and hence the quasiconformal distortion of Ln|W grows at most polynomially,

‖L−n|W‖ · ‖Ln|W‖ ≤ Cn2k for all n,

where k + 1 is the largest size of Jordan blocks of Ln|W . Thus we obtain

‖L−n|W ◦∆n ◦ Ln|W‖ ≤ Cn2k‖∆n‖ for all n.

It remains to show that ‖∆n‖ → 0 exponentially in n. We differentiate the equation
H̃an,bn = h ◦ Hh−1(an), h−1(bn) ◦ h−1 at an

DanH̃an,bn = (Dh−1(bn)h|W) ◦ (Dh−1(an)Hh−1(an), h−1(bn)) ◦ (Dan(h|W)−1),

and denoting Dh−1(an)Hh−1(an), h−1(bn) = Id + ∆′n we obtain

DanH̃an,bn = (Dh−1(bn)h|W) ◦Dan(h|W)−1 + (Dh−1(bn)h|W) ◦∆′n ◦Dan(h|W)−1.

Denoting Dh−1(bn)h|W ◦Dan(h|W)−1 = Id + ∆′′n we conclude that

‖∆n‖ = ‖Id−DanH̃an,bn‖ ≤ ‖∆′′n‖+ ‖Dh−1(bn)h|W‖ · ‖∆′n‖ · ‖Dan(h|W)−1‖.
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By the regularity assumption on h|Wws and Hölder continuity of TxW = E ix we have
Hölder dependence of Dx(h|W) : TxW → W on x. It follows that that

‖Dh−1(bn)h|W‖ · ‖Dan(h|W)−1‖ is uniformly bounded and

‖∆′′n‖ is Hölder in dist(an, bn).

Also, ‖∆′n‖ is Hölder in dist(an, bn) since DcHc,d depends Hölder continuously on c and
d and DcHc,d = Id. Now since dist(an, bn) → 0 exponentially as n → ∞ we conclude

that so does ‖∆n‖ and hence DH̃a,b = Id. �

Now we complete the proof of Proposition 5.1 as in [GKS11, Proposition 2.5]. Let
a be a fixed point of L and let B be the unit ball in V (a) centered at a. If B ⊂ Ṽ (a),
then V (a) = Ṽ (a) by invariance of V and Ṽ under L−1. By the assumption, the leaf
V (a) is dense in Td. It follows that the set of points x such that V (x) = Ṽ (x) is dense
in Td and hence V = Ṽ . Therefore, it suffices to show that B ⊂ Ṽ (a).

We argue by contradiction. Assume that there is z1 ∈ B such that z1 /∈ Ṽ (a). Let
x1 = W (z1) ∩ Ṽ (a). Since W has dense leaves we can choose a sequence {bn, n ≥ 1}
in W (a) so that bn → x1 as n→∞. Let yn = H̃a,x1(bn). Continuity of Ṽ implies that

the sequence {yn} converges to a point x2 ∈ Ṽ (a). Moreover, Lemma 5.2 implies that
{x1, x2} is a parallel translation of {a, x1}.

We continue this procedure inductively to construct the sequence {xn, n ≥ 1} in
Ṽ (a). Let zn = W (xn) ∩ V (a). Then by the construction

dV (zn, a) = n · dV (z1, a) and dW (xn, zn) = n · dW (x1, z1),

but this is impossible since L contracts V exponentially stronger than W . Indeed, if
we take N(n) to be the smallest integer such that LN(n)(zn) ∈ B, then

dW (LN(n)(xn), LN(n)(zn))→∞ as n→∞,

which contradicts maxz∈B dW (z,W (z) ∩ Ṽ (a)) <∞. Thus Ṽ = V . �

6. Proof of Theorem 1.3

The proof of Theorem 1.1 works for the global setting with only minor adjustments.
In this case, (2) =⇒ (1) as well as h(Wws) = Wws is given by [GSh23, Theorem 1.1].
Further, [GSh23, Theorem 1.2] yields the dominated splitting and spectrum for Df |Ews
matching that of L, which implies that Df |Ews has (χ, ε) spectrum for any ε > 0. The

remaining arguments work without change, except in (1) =⇒ (3) we only obtain that h̃

is a local C∞ diffeomorphism, as its injectivity is not clear. Still h̃ gives local foliation
charts for Wu+ss. Moreover, the Hölder continuous metric on Ews invariant under the
holonomies of Wu+ss can be pulled by h̃ using the linear foliation as in the proof of
Theorem 1.5(3) =⇒ (2) below, since this is a local property.
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7. Proof of Theorem 1.4

Theorem 1.4 follows from Theorem 7.1 below where we assume only the regularity
of holonomies of Wws between the leaves of Wss.

Theorem 7.1 (Rigidity of weak holonomies). Let L be a hyperbolic automorphism of
Td with dense leaves of Wws. Let f be a C∞ diffeomorphism sufficiently C1 close to
L, and let h be a topological conjugacy between f and L.

Let rss(L) be given by (1.3). and let q > 1 be a noninteger such that the leaves of
Wws are uniformly Cq. Then for the statements below we have

(1) ⇐⇒ (1′) ⇐⇒ (2) =⇒ (3) =⇒ (4).

(1) Holonomies ofWws between the leaves ofWss are uniformly Cr with r > rss(L),

(1′) Holonomies of Wws between the leaves of Wss are uniformly C∞,

(2) hss is a uniformly C∞ diffeomorphism along Wss,
and hss is Cq on Td,

(3) The joint foliations Wu+ws is conjugate to the linear foliation W u ⊕Wws by a
Cq diffeomorphism,

(4) Wws is a uniformly Cq subfoliation of Ws.

If in addition h(Wss) = W ss, then

(1, 1′, 2) ⇐⇒ h is a uniformly C∞ diffeomorphism along Wss

⇐⇒ h is a uniformly Cr diffeomorphism along Wss with r > rss(L).

7.1. Deducing Theorem 1.4 from Theorem 7.1.
We recall that for a noninteger r > 1 a foliation is Cr if and only if its leaves and

local holonomy maps are uniformly Cr, see e.g. [PSW97, Theorem 6.1(i)].
Also we always have h(Wws) = Wws, and hence Wu and Wws are jointly integrable

and the foliation Wu+ws is h−1(W u ⊕Wws).

(1) =⇒ (2). (1) implies Theorem 7.1(1) and hence Theorem 7.1(2). Since (1) also
implies that we can take q = r Theorem 7.1, we obtain that hss is Cr on Td.

(2) =⇒ (3). (2) implies Theorem 7.1(2) with q = r and hence it yields Theorem
7.1(3) with q = r, which is (3).

(3) =⇒ (1). (3) implies Theorem 7.1(3) with q = r and hence it yields Theorem
7.1(4) with q = r, which is (1).

The additional statement for h(Wss) = W ss also follows from the corresponding part
of Theorem 7.1.

7.2. Proof of Theorem 7.1. It follows the same scheme as the proof of Theorem 1.1.

We denote Ess = TWss. Since f is C1 close to L, the linear extension Df |Ess
has (χ, ε) spectrum with small ε. Since Wss has uniformly C∞ leaves, we can apply
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Theorems 4.2 to W =Wss and obtain the normal form coordinates ϕx on Wss

ϕx : Wss(x)→ Essx .
The maps ϕx are C∞ diffeomorphisms and depend continuously on x in C∞ topology.

(1) =⇒ (1′). Suppose that holonomies H = Hws of Wws inside Ws between the
leaves ofWss are uniformly Cr with r > rss(L). Hence we can apply Theorem 4.4 with
U = Ws, W = Wss and V = Wws. Indeed, the lifted holonomies H̄ in (4.1) are also
Cr, and so the theorem yields that they are sub-resonance polynomials:

(7.1) H̄x,y = ϕy ◦ Hx,y ◦ ϕ−1x : Essx → Essy are in Sx,y,
and in particular are C∞. Since the coordinates ϕx are also uniformly C∞, we conclude
that holonomies H = Hws are uniformly C∞.

(1) =⇒ (2). Now we use (7.1) to show that hss is uniformly C∞ alongWss. Since we
do not assume h(Wss) = W ss, we need to adjust the holonomy argument accordingly.
We fix a point x ∈ Td and consider the map

(7.2)
ĥx :Wss(x)→ W ss(h(x)) given by ĥx = Hws

h(x) ◦ h|Wss(x), where

Hws
h(x) : h(Wss(x))→ W ss(h(x)) is the linear holonomy along Wws.

We will prove that the maps ĥx are uniformly C∞.

We fix y ∈ Wss(x) and take a sequence of points yn ∈ Wws(x) converging to y. This
can be done since the leaves of the linear foliation Wws are dense in Td and the leaf
conjugacy h is a homeomorphism which sends Wws to Wws.

Since h(Wws) = Wws, the holonomy maps Hx,yn :Wss(x)→Wss(yn) are conjugated
to the corresponding linear holonomies Hh(x), h(yn) : W ss(h(x))→ W ss(h(yn)),

Hx,yn = (ĥyn)−1 ◦Hh(x), h(yn) ◦ ĥx :Wss(x)→Wss(yn).

We note that Hh(x), h(yn) are translations Hvn by the vectors vn = h(yn) − h(x). Since
yn converge to y, and hence h(yn) converge to h(y), we see that for v = h(y)− h(x),

Hh(x), h(yn) = Hvn converge to Hv : W ss(h(x))→ W ss(h(y)).

Since ĥy depend continuously on y, we obtain C0 convergence

Hx,yn converge to (ĥy)
−1 ◦Hv ◦ ĥx : Wss(x)→Wss(y) =Wss(x).

For y ∈ Wss(x) we have that ĥy and ĥx are related by the translation holonomy Hṽ

ĥx ◦ (ĥy)
−1 = Hṽ : W ss(h(y))→ W ss(h(x)),

where ṽ = ĥx(y)− h(y) ∈ Ews. We conclude that

(7.3) Hx,yn converges to Hv̂ := (ĥx)
−1 ◦Hv̂ ◦ ĥx :Wss(x)→Wss(x) =Wss(y),

where Hv̂ = Hṽ ◦Hv is the translation by v̂ = v + ṽ = ĥx(y)− h(x).
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Since ϕy depend continuously on y, using (7.1) and (7.3) we obtain that the corre-
sponding lifted holonomies H̄x,yn converge to a sub-resonance polynomial Px,y ∈ Sx,y,

Px,y = ϕy ◦ Hv̂ ◦ ϕ−1x = ϕy ◦ (ĥy)
−1 ◦Hv̂ ◦ (ĥx) ◦ ϕ−1x : Essx → Essy .

Now we lift ĥx to Wss(x) to Ex using coordinates ϕx

h̄x = ĥx ◦ ϕ−1x : Essx → W ss(h(x)),

and conjugate the translation Hv̂ by h̄x to obtain

H̄v̂ = (h̄x)
−1 ◦Hv̂ ◦ h̄x = ϕx ◦ h−1 ◦Hv̂ ◦ h ◦ ϕ−1x = ϕx ◦ ϕ−1y ◦ Px,y : Essx → Essx .

Since Px,y ∈ Sx,y and ϕx ◦ ϕ−1y : Essy → Essx is a composition of a sub-resonance

polynomial in Sy,x with a translation of Essx we conclude that H̄v ∈ S̄x, the finite
dimensional Lie group generated by Sx and the translations of Essx . Thus h̄x conjugates
the action of Ess by translations of W ss(h(x)) with the continuous action of Ess by
elements of S̄x. So we get the injective continuous homomorphism

ηx : Ess → S̄x given by ηx(v̂) = H̄v̂ = (h̄x)
−1 ◦Hv̂ ◦ h̄x.

which is C∞ and depends continuously on x in C∞ topology. This yields that ĥ−1x and

ĥx are also C∞ diffeomorphisms that depend continuously on x in C∞ topology.
This proves that the component hss is uniformly C∞ along the leaves of Wss, as

it is easy to see that ĥx = hss|Wss(x) under a local identification of W ss(h(x)) with
Ess. Since hss is also locally constant along the transversal leaves Wu+ws, it is as
regular along these leaves as they are. Since Wu has iniformly C∞ leaves and Wws

has uniformly Cq, the leaves of the joint foliation Wu+ws are uniformly Cq. By Journe
lemma we conclude that hss ∈ Cq(Td).

(2) =⇒ (1). Since hss ∈ C∞(Td) and ĥx = hss|Wss , it follows that the maps ĥx are
uniformly C∞ along the leaves of Wss. It is easy to see from the definition (7.2) that

ĥx conjugates the holonomies ofWws insideWs with corresponding linear holonomies:
Hx,y = (ĥy)

−1 ◦Hx,y ◦ ĥx and hence Hx,y are uniformly C∞.

The case when h(Wss) = W ss. When h(Wss) = W ss, it is clear from (7.2) that

h|Wss = ĥx = hss|Wss and hence (2) implies that h is a uniformly C∞ diffeomorphism
alongWss. Conversely, if h(Wss) = W ss and h is a uniformly Cr diffeomorphism along
Wss with r > rss(L), then so are the holonomies of Wws as they are conjugate to the
linear holonomies: Hx,y = (h|Wss(y))

−1 ◦Hx,y ◦ h|Wss(x). This yields (1).

(2) =⇒ (3). The argument is almost identical to the proof of (3) of Theorem 1.1.
We map the joint foliation Wu+ws = h−1(W u ⊕Wws) to W u ⊕W ss by the map

h̃(x) = h(x)−∆u+ws(x) = x+ ∆ss(x) = xu+ws + hss(x) : Td → Td.
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This map is C0 close to the identity and is in Cq(Td) since hss is Cq(Td) by (2).

Invertibility of its derivative Dh̃ follows as in Theorem 1.1 from the fact that ĥx =
hss|Wss(x) :Wss(x)→ W ss(h(x)) is a C∞ diffeomorphism by the proof of (2).

(3) =⇒ (4). This follows by intersecting the Cq foliation Wu+ws with uniformly
C∞ leaves of Ws.

8. Proof of Theorem 1.5

We note that (2)⇐⇒ (2′) does not require dense leaves.

(2) =⇒ (2′). Since h(Wu) = W u, the component hs is locally constant along Wu,
and hence uniformly C∞ alongWu. Together with (2), this yields that hs is in C∞(Td).

(2′) =⇒ (2). Since h(Ws) = W s we have h|Ws = hs|Ws under a local identification
of W s and Es, and hence a uniformly C∞ diffeomorphism.

(1) =⇒ (2′) follows by combining Theorems 1.1 and 1.4. Indeed, h(Wss) = W ss

is Theorems 1.1(1) and hence yields Theorems 1.1(5), so that hws is in C∞(Td) and a
Cq diffeomorphism along Wws with some q > 1. The second assumption in Theorem
1.5(1) is Theorem 1.4(1) with r =∞ and hence yields Theorem 1.4(2) with r =∞, so
that hss is in C∞(Td) and a C∞ diffeomorphism along Wss. Hence hs = hws + hss is
in C∞(Td) and a diffeomorphism along Ws.

(2′) =⇒ (3). The argument is almost identical to the proof of (3) of Theorem 1.1.
We map the foliation Wu to W u by the C∞ diffeomorphism

h̃(x) = h(x)−∆u(x) = x+ ∆s(x) = xu + hs(x) : Td → Td.

This map is C0 close to the identity and is in C∞(Td) since hs is in C∞(Td) by (2).

Invertibility of its derivative Dh̃ follows as in Theorem 1.1 from the fact that hs is a
diffeomorphism along Ws.

(3) =⇒ (2). This implication requires only that W u has dense leaves, which is al-
ways true for a hyperbolic automorphism. The proof highlights usefulness of conjugacy
to a linear foliation. It is an easy version of the holonomy argument where normal form
polynomials are replaced by isometries.

Let φ be a C∞ diffeomorphism such that φ(Wu) = W u and let W ′ = φ(Ws). Since
W u is linear, its holonomies between W s leaves are isometries with respect to the
standard metric on Td. For each x ∈ Td both TxW

s and TxW ′ are transverse to
Eu = TW u, and so we can identify them by the projection along Eu. This defines
a continuous Riemannian metric g′ on TW ′ for which holonomies of W u between W ′
leaves are isometries. Moreover, since the leaves of Ws are uniformly C∞, so are the
leaves of W ′, and hence g′ is uniformly C∞ on the leaves of W ′. Then g = φ−1∗ (g′)
defines a continuous Riemannian metric on TWs which is uniformly C∞ along the
leaves of Ws and with respect to which the holonomies of Wu are isometries.

We note that for each x the isometries of (Ws(x), g) are C∞ diffeomorphisms of
Ws(x) and form a finite dimensional Lie group Gx. Since we have that the holonomies
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of Wu are isometries, repeating the holonomy argument as in the proof of Theorem
1.1, we see that h|Ws(x) conjugates the action of Es by translations of W s(h(x)) to a
continuous action of Es by isometries in Gx. This yields that h|Ws(x) are uniformly C∞

diffeomorphisms.

9. Proof of Theorem 1.6

(1) =⇒ (2, 3, 4) is clear.

(3) =⇒ (2) Let 0 < ρ < 1 be the largest absolute value of eigenvalues of L on Ess

and 0 < ρ′ < 1 be the smallest absolute value of eigenvalues of L on Ews. Then if f is
C1-close to L and y ∈ Wss(x) then dist(fnx, fny) ≤ C(ρ + ε)n for all n ∈ N. If h is
α-Hölder then for all n ∈ N

dist(Lnh(x), Lnh(y)) = dist(h(fnx), h(fny)) ≤ C ′dist(fnx, fny)α ≤ C ′Cα(ρ+ ε)αn.

If α is sufficiently close to 1 so that (ρ + ε)α < ρ′, this implies that h(y) ∈ W ss(h(x))
and thus h(Wss(x)) ⊂ W ss(h(x)). Since h is a homeomorphism, h(Wss(x)) contains
an open ball in W ss(h(x)), and then iterating by f yields h(Wss(x)) = W ss(h(x)).

(4) =⇒ (2) under the density of leaves assumption for Lyapunov subfoliations of
Wws+wu follows from Theorem 1.1 (4) =⇒ (1) applied to f for Wws and to f−1 for
Wwu, yielding h(Wss) = W ss and h(Wuu) = W uu respectively.

(2) =⇒ (1). Applying Theorem 1.1 (1) =⇒ (3) we obtain that the bundle Eu+ss is
C∞. Similarly using f−1 we obtain that Es+uu is C∞ and hence so is the intersection
Es+uu∩Eu+ss = Ess+uu. Since Ess+uu and Ews+wu are symplectic orthogonal, we conclude
that Ews+wu and hence the corresponding foliation Wws+wu are C∞. This is the only
place where we use that f preserving a C∞ symplectic form. Since the foliationWws+wu

is C∞, by intersecting it with Ws and Wu we obtain that Wws and Wwu are their
respective uniformly C∞ subfoliations. Thus we obtain that Theorem 1.5(1) is satisfied
for both f and f−1 and hence yields (2′) in each case. Combining them we conclude
that h = hs + hu is in C∞(Td) with invertible derivative.
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