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1. Introduction

Cocycles are a fundamental tool in the study of dynamical systems and group actions.
In smooth dynamics, the differential and related objects provide important examples of
cocycles. For a hyperbolic or partially hyperbolic diffeomorphism f of a manifold X, the
restrictions of the differential to invariant sub-bundles of TX, such as stable, unstable,
and center, give examples of so called linear cocycles. Linear cocycles on trivial bundles
can be viewed as GL(d,R)-valued cocycles. Another class of examples is given by
matrix or operator-valued cocycles over non-smooth hyperbolic systems such as shifts
and subshifts of finite type. Locally constant cocycles over these systems correspond to
random and Markovian sequences of matrices and operators.

Cohomology, or conjugacy, is a notion of equivalence for cocycles, which can be con-
sidered in various regularity classes. The key questions in the study of cocycles include:

• When two cocycles are cohomologous;
• When a measurable conjugacy between two cocycles is continuous;
• When a cocycle is cohomologous to a simpler one, for example to the identity

cocycle or to one with values in a smaller group such as orthogonal or conformal.

Reduction to a smaller group can often be interpreted as existence and regularity of an
invariant geometric structure, such as a Riemannian metric or a conformal structure.
As abundance of periodic orbits is one of the key features of hyperbolic systems, one
may try to deduce properties of cocycles from their periodic data, that is, their products
along the periodic orbits of f . Questions include whether conformality at the periodic
points implies conformality of the cocycle, and whether conjugacy of the periodic data
for two cocycles implies cohomology.

Another important problem in the study of cocycles is estimating their growth and,
in particular, the asymptotic growth rates given by the Lyapunov exponents. For hy-
perbolic systems, approximations of the Lyapunov exponents and growth estimates can
sometimes be obtained from the periodic data of the cocycle. Cocycles with one Lya-
punov exponent give a generalization of conformal ones.

Many of the results and techniques for hyperbolic systems extend to the partially
hyperbolic setting, and periodic approximation of Lyapunov exponents also holds in the
non-uniformly hyperbolic case.
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The motivation for studying linear cocycles comes in part from the area of local and
global rigidity of hyperbolic systems. Global rigidity refers to existence of a smooth
conjugacy to an algebraic model, and local rigidity is smoothness of the conjugacy to a
C1-small perturbation when natural obstructions vanish. The results on linear cocycles
produced many applications to this area.

The study of linear cocycles over hyperbolic and partially hyperbolic systems is an
active area, and a variety of questions have been explored. In this survey we focus on the
ones mentioned above. Other directions include the study of hyperbolicity, simplicity
of Lyapunov spectrum, and (dis)continuous dependence of Lyapunov exponents on the
cocycle. Many results in these areas are related to the invariance principle for cocycles
developed in [V08, AV10, ASV13].

The text is organized as follows. In Section 2 we give definitions of the main classes
of hyperbolic dynamical systems, and of linear and Banach cocycles over these systems.
In Section 3 we discuss fiber bunching and holonomies of a cocycle, which are used in
subsequent sections. Section 4 is devoted to the three questions on cohomology of group-
valued cocycles over hyperbolic systems mentioned above. We state several results, give
examples, and outline some of the proofs and constructions. In Section 5 we discuss
the Lyapunov exponents of a cocycle and their periodic approximation. We also deduce
growth estimates for cocycles. In Section 6 we consider conformal structures and their
relation to uniform quasiconformality of a linear cocycle. We also obtain conformality
and isometry for a linear cocycle from its periodic data, and we state an analogous
result for the infinite-dimensional setting. In Section 7 we discuss cocycles with one
Lyapunov exponent, and we show that they have a specific structure. We also give a
classification of GL(2,R)-valued cocycles with one exponent. Section 8 is devoted to
cocycles over partially hyperbolic diffeomorphisms and extensions of some of the results
for hyperbolic systems to this setting. In Section 9 we give some applications of results
on linear cocycles to the questions of rigidity for hyperbolic diffeomorphisms and flows.

2. Cocycles over hyperbolic dynamical systems

We will consider cocycles over hyperbolic dynamical systems. Below we describe the
three main classes of such systems, see [KtH] for more details.

Transitive Anosov diffeomorphisms. A diffeomorphism f of a compact connected
manifold X is called Anosov if there exist a splitting of the tangent bundle TX into
a direct sum of two Df -invariant continuous sub-bundles Es and Eu, a Riemannian
metric on X, and continuous functions ν and ν̂ such that

(2.1) ‖Dfx(vs)‖ < ν(x) < 1 < ν̂(x) < ‖Dfx(vu)‖
for any x ∈ X and unit vectors vs ∈ Es(x) and vu ∈ Eu(x). The sub-bundles Es and
Eu are called stable and unstable. We assume that f is at least C1+Hölder, and then the
sub-bundles are Hölder continuous.

The stable and unstable sub-bundles are tangent to the stable and unstable foliations
W s and W u respectively. We define the local stable manifold of x, W s

loc(x), as a ball
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centered at x of radius ρ in the intrinsic metric of W s(x). We choose ρ sufficiently small
so that W s

loc(x)∩W u
loc(z) consists of a single point for any sufficiently close x and z in X,

and for every x ∈ X we have ‖Df |Es(y)‖ ≤ ν(x) for all y in W s
loc(x). The first property

is called the local product structure of the foliations, and the second one implies that

(2.2) dist(f(x), f(y)) ≤ ν(x) · dist(x, y) for all x ∈ X and y ∈ W s
loc(x).

Local unstable manifolds are defined similarly.
A diffeomorphism f is (topologically) transitive if there is a point x in X with dense

orbit. All known examples of Anosov diffeomorphisms have this property. We note that
any transitive Anosov diffeomorphism is topological mixing, that is, for any open sets
U1 and U2 in X, there exists N ∈ N such that fn(U1) ∩ U2 6= ∅ for all n ≥ N .

Topologically mixing diffeomorphisms of locally maximal hyperbolic sets.
More generally, let f be a diffeomorphism of a manifoldM. A compact f -invariant set
X ⊆ M is called hyperbolic if there exist a continuous Df -invariant splitting TXM =
Es⊕Eu, and a Riemannian metric and continuous functions ν, ν̂ on an open set U ⊇ X
such that (2.1) holds for all x ∈ X. The set X is called locally maximal if X =⋂
n∈Z f

−n(U) for some open set U containing X.

Mixing subshifts of finite type. Let M be k × k matrix with entries from {0, 1}
such that all entries of MN are positive for some N . Let

X = {x = (xn)n∈Z : 1 ≤ xn ≤ k and Mxn,xn+1 = 1 for every n ∈ Z }.
The shift map f : X → X is defined by (fx)n = xn+1. The system (X, f) is called a
mixing subshift of finite type. We fix ν ∈ (0, 1) and consider the metric

dist(x, y) = dν(x, y) = νn(x,y), where n(x, y) = min { |i| : xi 6= yi}.
The following sets play the role of the local stable and unstable manifolds of x:

W s
loc(x) = { y | xi = yi, i ≥ 0 }, W u

loc(x) = { y | xi = yi, i ≤ 0 },

and we can take ν(x) = ν and ν̂(x) = ν−1.

Lemma 2.1 (Anosov Closing Lemma). [KtH, 6.4.15-17] Let (X, f) be a hyperbolic
system. Then there exist constants c, δ0 > 0 such that for any x ∈ X and k ∈ N with
dist(x, fkx) < δ0 there exists a periodic point p ∈ X with fkp = p such that the orbit
segments x, fx, . . . , fkx and p, fp, . . . , fkp remain close:

dist(f ix, f ip) ≤ c dist(x, fkx) for every i = 0, . . . , k.

Moreover,

(2.3) dist(f ix, f ip) ≤ c dist(x, fkx) e−γ min { i, k−i } for every i = 0, . . . , k,

where e−γ = max
x∈X

max{ν(x), (ν̂(x))−1} < 1.

Linear and Banach cocycles over dynamical systems. Let G be a topological
group with a complete metric. We primarily consider the group G = GL(d,R) and
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more generally GL(V ), the group of invertible bounded linear operators on a Banach
space V . We fix the metric d on the group:

d(A,B) = ‖A−B‖+ ‖A−1 −B−1‖, where ‖ . ‖ is the operator norm.

Definition 2.2. Let A be a function from X to a group G. The G-valued cocycle over
(X, f) generated by A is the map A : X × Z → G defined by A(x, 0) = Id and

A(x, n) = An
x = A(fn−1x) ◦ · · · ◦ A(x) and A(x,−n) = A−nx = (An

f−nx)
−1 for n ∈ N.

Clearly, A satisfies the cocycle equation An+k
x = An

fkx
◦Ak

x.

We refer to cocycles with values in G = GL(d,R) and in GL(V ) as linear cocycles and
Banach cocycles, respectively.

A prime example of a linear cocycle is the derivative cocycle, i.e., the differential of a
diffeomorphism f : X → X, where the tangent bundle of X is trivial, i.e. TX = X×Rd.
Then Df can be viewed as a GL(d,R)-valued cocycle:

A(x) = Ax = Dxf ∈ GL(d,R) and An
x = Dxf

n.

One can also consider restrictions of Df to invariant sub-bundles of TX, for example
the stable and unstable sub-bundles.

Another important class of examples is given by random and Markovian sequences of
matrices and operators. They correspond to locally constant cocycles over full shifts or
subshifts of finite type.

Standing assumption. We will always assume that the cocycle A is β-Hölder, that
is, its generator A is a Hölder continuous function with exponent β from X to G.

Hölder continuity of the cocycle is natural in view of the examples above. The de-
rivative cocycle of a C1+Hölder diffeomorphism f is Hölder continuous, and so are its
restrictions to the stable and unstable sub-bundles. These subbundles are usually only
Hölder continuous even for a more regular diffeomorphism [HaW99], and hence Df |Es
and Df |Es are also only Hölder continuous. Also, symbolic dynamical systems have a
Hölder structure, but no smooth one. In addition, Hölder continuity of the cocycle is
necessary to develop a meaningful theory, even for R-valued cocycles over hyperbolic
systems.

Bundle setting. The derivative cocycle example suggests viewing a linear cocycle A

as an automorphism of a vector bundle E = X × Rd with the fiber map Ax : Ex → Efx.
More generally, one can allow non-trivial bundles, and most of our results extend to

this setting. Let (X, f) be a hyperbolic system and P : E → X be a finite dimensional
β-Hölder vector bundle over X. A continuous linear cocycle over f is a homeomorphism
A : E → E such that

P ◦A = f ◦ P and Ax : Ex → Efx is a linear isomorphism.

Such an A is called β-Hölder if Ax depends β-Hölder on x, with proper identification of
fibers at nearby points. We refer to Section 2.2 of [KS13] for a detailed description of
this setting.
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3. Fiber bunching and holonomies

In the study of cocycles, comparing their iterates along exponentially converging orbits
plays an important role. If the group G is Abelian, the products of the form (An

y )−1◦An
x,

where y ∈ W s(x), can be rearranged as (An
y )−1 ◦An

x =
∏n−1

i=0 (A(f i(y))−1 ◦ A(f i(x)) and
then estimated easily using exponential closeness of the iterates of x and y and Hölder
property of the cocycle. In the non-commutative case, estimating such products is
more difficult and various assumptions on the growth of the cocycle have been used to
ensure their convergence. For linear and Banach cocycles, we use a condition called fiber
bunching, which means that non-conformality of the cocycle in the fiber is dominated
by the expansion and contraction in the base.

Definition 3.1. The quasiconformal distortion of a cocycle A is the function

QA(x, n) = ‖An
x‖ · ‖(An

x)−1‖ =
sup { ‖An

x(v) ‖ : ‖v‖ = 1 }
inf { ‖An

x(v) ‖ : ‖v‖ = 1 }
, x ∈ X and n ∈ Z.

The cocycle is uniformly quasiconformal if QA(x, n) ≤ K for all x and n,
and it is conformal if QA(x, n) = 1 for all x and n.

In the finite dimensional case, An
x maps the unit sphere to an ellipsoid, and QA(x, n)

is the ratio of its largest and smallest semi-axes.

Definition 3.2. A β-Hölder cocycle A over a hyperbolic system (X, f) is fiber bunched
if there exist numbers θ < 1 and L such that for all x ∈ X and n ∈ N,

QA(x, n) · (νnx )β < Lθn and QA(x,−n) · (ν̂−nx )β < Lθn,

where ν and ν̂ are as in (2.1), νnx = ν(fn−1x) · · · ν(x) and ν̂−nx = (ν̂nf−nx)
−1.

Clearly, conformal and uniformly quasiconformal cocycles are fiber bunched, and so
are cocycles that are sufficiently close to conformal.

The limits of products (An
y )−1◦An

x are useful in the study of non-commutative cocycles.
These limits are called holonomies, and we will define them in Proposition 3.3 below. In
the context of linear cocycles, this notion was introduced in [BV04, V08] and holonomies
were further studied in [ASV13, KS13, S15, KS16]. Existence of holonomies was proved
in [V08, ASV13] under the stronger “one-step” fiber bunching condition that there is
θ < 1 such that

(3.1) ‖Ax‖ · ‖(Ax)
−1‖ · ν(x)β < θ for all x ∈ X.

The result below, which also holds in the bundle setting [KS13], gives existence of
holonomies under the weakest fiber bunching assumption given in Definition 3.2.

Proposition 3.3. Let A be a β-Hölder linear or Banach cocycle over (X, f). If A is
fiber bunched, then for every x ∈ X and y ∈ W s(x) the limit

(3.2) HA,s
x,y = lim

n→∞
(An

y )−1 ◦An
x,

exists and satisfies
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(H1) HA,s
x, y ∈ GL(V ) is an invertible linear map from Ex to Ey;

(H2) HA,s
x, x = Id and HA,s

y, z ◦HA,s
x, y = HA,s

x, z , which implies (HA,s
x, y)

−1 = HA,s
y, x;

(H3) HA,s
x, y = (An

y )−1 ◦HA,s
fnx, fny ◦An

x for all n ∈ N;

(H4) ‖HA,s
x,y − Id ‖ ≤ c dist(x, y)β, where c is independent of x and y ∈ W s

loc(x),

and also ‖(An
y )−1 ◦An

x − Id ‖ ≤ c dist(x, y)β for every n ∈ N.

The continuous map HA,s : (x, y) 7→ HA,s
x, y , where x ∈ X, y ∈ W s(x), is called the

stable holonomy for A. The unstable holonomy HA,u for A is defined similarly:

HA,u
x, y = lim

n→∞

(
(A−ny )−1 ◦ (A−nx )

)
= lim

n→∞

(
An
f−ny ◦ (An

f−nx)
−1) , where y ∈ W u(x).

Sometimes, any continuous map HA,s : (x, y) 7→ HA,s
x, y satisfying (H1-H3) is called a

stable holonomy [ASV13], and the one in (3.2) is referred to as the standard holonomy to
distinguish it [KS16]. It was proved in [KS13] that properties (H1-H4) uniquely define
the standard holonomy. However, other maps may exist satisfying (H1-H3) with Hölder
exponent lower than β in (H4), as discussed in [KS16] after Corollary 4.9.

Proof. We give a proof under the “one-step” fiber bunching assumption (3.1).
Let x ∈ X and y ∈ W s

loc(x). The key step is to show that the sequence ((An
y )−1 ◦An

x)

is Cauchy. Denoting xi = f i(x) and yi = f i(y), we obtain

(An
y )−1 ◦An

x = (An−1
y )−1 ◦

(
(Ayn−1)

−1 ◦Axn−1

)
◦An−1

x =

= (An−1
y )−1 ◦ (Id + rn−1) ◦An−1

x = (An−1
y )−1 ◦An−1

x + (An−1
y )−1 ◦ rn−1 ◦An−1

x =

= · · · = Id +
n−1∑
i=0

(Ai
y)
−1 ◦ ri ◦Ai

x, where ri = (Ayi)
−1 ◦Axi − Id.

Since y ∈ W s
loc(x), for each i ∈ N we can estimate

dist(xi, yi) ≤ dist(x, y) · νiy = dist(x, y) · ν(y0)ν(y1) · · · ν(yi−1).

Since A is Hölder continuous with exponent β, we have

‖ri‖ ≤ ‖(Ayi)
−1‖ · ‖Axi −Ayi‖ ≤ c1 dist(xi, yi)

β ≤ c1(dist(x, y) νiy)
β

Also,
‖Axk‖
‖Ayk‖

≤ 1 +
‖Axk −Ayk‖
‖Ayk‖

≤ 1 + c2(dist(xk, yk))
β,

and we estimate

‖(Ai
y)
−1‖ · ‖Ai

x‖ ≤ ‖(Ay)
−1‖ · ‖(Ay1)

−1‖ · · · ‖(Ayi−1
)−1‖ · ‖Ax‖ · ‖Ax1‖ · · · ‖Axi−1

‖

≤
i−1∏
k=0

‖Ayk‖ ‖(Ayk)
−1‖ ·

i−1∏
k=0

‖Axk‖
‖Ayk‖

<

i−1∏
k=0

θ ν(yk)
−β ·

i−1∏
k=0

(
1 + c2 (dist(xk, yk))

β
)
.

Since the distance between xk and yk decreases exponentially, the second product is
uniformly bounded and we obtain ‖(Ai

y)
−1‖ · ‖Ai

x ‖ ≤ c3 θ
i (νiy)

−β.
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It follows that for every i ≥ 0,

‖(Ai
y)
−1 ◦ ri ◦Ai

x‖ ≤ ‖(Ai
y)
−1‖ · ‖Ai

x‖ · ‖ri‖ ≤
≤ c3 θ

i (νiy)
−β · c1(dist(x, y) νiy)

β = c4 dist(x, y)β θi.

Therefore, for every n ∈ N,

‖Id− (An
y )−1 ◦An

x‖ ≤
n−1∑
i=0

‖(Ai
y)
−1 ◦ ri ◦Ai

x‖ ≤ c4 dist(x, y)β
n−1∑
i=0

θi ≤ c dist(x, y)β.

Also, since

‖(An+1
y )−1 ◦An+1

x − (An
y )−1 ◦An

x‖ = ‖(An
y )−1 ◦ rn ◦An

x‖ ≤ c4 dist(x, y)β θn,

the sequence {(An
y )−1 ◦ An

x} is Cauchy and hence it has a limit Hs
xy ∈ GL(V ). Since

the convergence is uniform on the set of pairs (x, y) where y ∈ W s
loc(x), the map Hs is

continuous. It is easy to see that the maps Hs
xy satisfy (H2, H3, H4). The map Hs

xy can
be extended to any y ∈ W s(x) using (iii).

Existence of holonomies under the weaker fiber bunching of Definition 3.2 can be
deduced by considering iterates of the cocycle and using uniqueness of holonomies, see
[S15, Proposition 4.4] for details. �

4. Cohomology of group-valued cocycles over hyperbolic systems

4.1. Introduction and main questions. Cohomology of Hölder continuous cocycles
over hyperbolic systems have been extensively studied starting with the seminal work
of A. Livšic [Li71, Li72], where he established the following result. Parts (i) and (ii) are
referred to as Periodic Point and Measurable Livšic Theorems, respectively.

Theorem 4.1 (Livšic Theorem). Let f : X → X be a transitive Anosov diffeomorphism,
and let α : X → R be a Hölder continuous function. Then

(i) If
∑n−1

i=0 α(f i(p)) = 0 whenever fn(p) = p, then there exists a Hölder continuous
function ϕ : X → R such that α(x) = ϕ(f(x))− ϕ(x) for all x ∈ X.

(ii) Let µ be an ergodic invariant measure with full support and local product struc-
ture. If there exists a µ-measurable function ϕ̃ such that α(x) = ϕ̃(f(x))− ϕ̃(x)
for µ-a.e. x ∈ X, then there exists a Hölder continuous function ϕ : X → R
such that α(x) = ϕ(f(x))− ϕ(x) for all x ∈ X and ϕ̃(x) = ϕ(x) µ-a.e.

The conclusions are that α is a coboundary, more specifically, it is Hölder continuously
cohomologous to the zero cocycle. The notion of cohomology can be considered in various
categories. For cocycles with values in a group G it is defined as follows.

Definition 4.2. Cocycles A and B are (measurably, continuously) cohomologous if
there exists a (measurable, continuous) function C : X → G such that

An
x = C(fnx) ◦Bn

x ◦ C(x)−1 for all x ∈ X and n ∈ Z.
The function C is called a conjugacy between A and B, or a transfer map.
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In addition to the case ofG = R, Livšic also established a result similar to Theorem 4.1
for Abelian G. Following his work, the questions of cohomology to the identity cocycle
have been considered for non-Abelian groups, where they proved to be much more
difficult.

For a G-valued cocycle A, we call its periodic data the set of its products along the
periodic orbits in the base, that is

AP = {An
p : p = fnp, n ∈ N}.

A number of results extending Theorem 4.1 (i) were obtained [Li72, NT95, PWa01,
LWi10] under additional assumptions on the group G or on the growth of the cocycle,
such as compactness of the group or fiber bunching type conditions for the cocycle,
see [KtN] for more details and references. Without such assumptions, the results were
established in the following cases.

Theorem 4.3. Let A be a Hölder continuous cocycle over (X, f) with values in one of
the following groups

GL(d,R), and more generally Lie groups and their closed subgroups (Kalinin [K11]);

The group of invertible elements of a Banach algebra (Grabarnik, Gyusinsky [GrGu17]);

A group of diffeomorphisms of a compact manifold (Avila, Kocsard, Liu [AKL18]).

If A has identity periodic data, that is AP = {eG}, then A is Hölder cohomologous to
the identity cocycle.

Extending Theorem 4.1 (ii), Livšic established Hölder continuity of a measurable
conjugacy to the identity cocycle for compact groups and groups with a bi-invariant
metric [Li72]. Further results for Lie groups were obtained under additional assumptions
such as boundedness of conjugacy or bunching of the cocycle [PaP97, NiP99, PWa01],
and for GL(d,R) without extra assumptions by Butler [Bt18].

Now we consider cohomology of two arbitrary Hölder continuous G-valued cocycles
A and B over a hyperbolic system. This general problem is the most relevant for appli-
cations in the study of hyperbolic systems, as the derivative cocycle or its restrictions
to the stable and unstable sub-bundles are not cohomologous to the identity cocycles.
If G is an Abelian group, one can consider the cocycle A ◦ B−1 and thus reduce the
problem to the case when B is the identity cocycle, i.e. Bx = eG, which was resolved by
Livšic. For non-Abelian G, however, the general problem does not reduce to the special
case B = eG and is much more difficult. Moreover, the answers to some natural ques-
tions are negative in general. The main focus of the research has been on the following
generalizations of the Livšic theorem.

Question 4.4. Suppose that A and B have conjugate periodic data, that is, whenever
p = fnp, An

p = C(p) ◦ Bn
p ◦ C−1(p) for some C(p) ∈ G. Does it follow that A and B

are continuously cohomologous?

Clearly, continuous cohomology implies conjugacy of the periodic data. As the answer
to Question 4.4 is negative in general, one may ask:
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Question 4.5. Suppose that A and B have equal periodic data, that is, An
p = Bn

p

whenever fnp = p. Does it follow that A and B are continuously cohomologous?

Finally, the following question extends the second part of Livšic theorem.

Question 4.6. Let C be a measurable conjugacy between A and B. Is C continuous?
More precisely, does it coincide with a continuous conjugacy almost everywhere?

As in the Livšic theorem, measurability should be understood with respect to an ergodic
invariant measure with full support and local product structure, for example the measure
of maximal entropy or the invariant volume.

Positive answers for Questions 4.6 and 4.5, as well as some results for cocycles with
conjugate data, were obtained by Parry and Pollicott [PaP97, Pa99] for compact G and,
somewhat more generally, by Schmidt [Schm99] for cocycles with “bounded distortion”.
First results outside this setting, including the following proposition, were obtained in
[S13] for certain types of GL(2,R)-valued cocycles.

Proposition 4.7. [S13] Let f : X → X be a transitive Anosov diffeomorphism, and let
A and B be cocycles over (X, f) given by

Ax = k(x)

[
1 α(x)
0 1

]
and Bx = l(x)

[
1 β(x)
0 1

]
,

where k(x), l(x) 6= 0 for all x, and α, β are not cohomologous to 0.

(i) If A and B have conjugate periodic data with C(p) continuous at a periodic point
p0, then A and B are Hölder continuously cohomologous.

(ii) Any measurable conjugacy between A and B is Hölder continuous.

(iii) A and B are (measurably or Hölder) cohomologous if and only if there exist
Hölder functions ϕ(x) and s(x) and a constant c 6= 0 such that
k(x)/l(x) = ϕ(fx)/ϕ(x) and α(x)− cβ(x) = s(fx)− s(x) for all x ∈ X.

We note that the cocycles in the proposition are fiber bunched, and that statements
(i) and (ii) hold more generally for GL(2,R)-valued cocycles with one exponent at each
periodic point.

General results on cohomoolgy of fiber bunched cocycles were obtained in [S15] and
[S17] for linear and Banach cocycles, respectively.

4.2. Continuous conjugacy from periodic data. As the following example demon-
strates, the answer to Question 4.4 is negative in general, even if the cocycles are fiber
bunched and C(p) is bounded.

Example 4.8. [S13] There exist cocycles A and B with generators Ax =

[
1 α(x)
0 1

]
and Bx =

[
1 β(x)
0 1

]
arbitrarily close to the identity, such that A and B have conjugate

periodic data with C(p) uniformly bounded, but are not measurably cohomologous.
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The construction. By Proposition 4.7, A and B are measurably cohomologous only if
there exist c 6= 0 and a Hölder function s(x) such that α(x)− cβ(x) = s(fx)− s(x). By
Livšic theorem, the latter is equivalent to the fact that α(p, n)− cβ(p, n) = 0 for every
periodic point p = fnp, where α(p, n) = α(p) + α(fp) + · · ·+ α(fn−1p).

Let ε > 0 and let α and β be Hölder continuous functions such that for two periodic
points p1 = fn1(p1) and p2 = fn2(p2)

α(f ip1) = β(f ip1), 0 ≤ i ≤ n1 − 1, α(f ip2) = 2β(f ip2), 0 ≤ i ≤ n2 − 1,

and 0 < β(x) ≤ α(x) ≤ 2β(x) < ε for all x. The function β can be chosen constant.

As α(p1, n1) = β(p1, n1) and α(p2, n2) = 2β(p2, n2), there is no constant c such that
α(p, n)− cβ(p, n) = 0 for every periodic p.

Since α(p, n) > 0 and β(p, n) > 0 at every periodic point p = fnp, the functions α
and β are not cohomologous to 0, and the matrices An

p and Bn
p are conjugate by the

matrix C(p) = diag (α(p, n)/β(p, n), 1). Since 1 ≤ α(p, n)/β(p, n) ≤ 2 for every p, C(p)
is uniformly bounded. �

Thus one has to make an assumption on C(p) stronger than boundedness. If C(p)
is Hölder continuous, extending it to a function C on X and conjugating B by this
extension reduces Question 4.4 to Question 4.5. We obtain a positive answer to Question
4.4 under a weaker assumption that C(p) is Hölder continuous at one periodic point.

Assumptions. In Theorem 4.9, Corollary 4.10, Proposition 4.11 and Corollary 4.12, A
and B are β-Hölder GL(d,R) or GL(V )-valued cocycles over a hyperbolic system.

We note that in the theorem below fiber bunching is assumed only for A, since fiber
bunching for B can be obtained from the periodic data. This is discussed in Section 5.5.

Theorem 4.9. [S15, S17] Suppose that A is fiber bunched, and B has conjugate periodic
data such that for some periodic point p0, d(C(p), C(p0)) ≤ c dist(p, p0)

β for every pe-
riodic point p. Then A and B are β-Hölder cohomologous. More precisely, there exists
a unique β-Hölder continuous conjugacy C̄ between A and B such that C̄(p0) = C(p0).
Moreover, if A and B take values in a closed subgroup G0 of GL(d,R) or GL(V ) and
C(p0) ∈ G0 then C̄(x) ∈ G0 for all x.

The conjugacy C̄(p) does not necessarily coincide with C(p) for p 6= p0. For example,
let B be the identity cocycle and let Ax = C̄(fx) ◦ Bx ◦ C̄(x)−1 = C̄(fx) ◦ C̄(x)−1,
where C̄ : X → GL(d,R) is a Hölder continuous function with C̄(p0) = Id. Then
An
p = Bn

p = Id whenever p = fnp, and thus we can take C(p) = Id for each p.

As a corollary, we obtain a complete positive answer to Question 4.5 when one of the
cocycles is fiber bunched. For G = GL(d,R), this result was independently obtained by
Backes [Bac15] under a stronger, uniform, version of bunching for both cocycles.

Corollary 4.10. [S15, S17] If a cocycle A is fiber bunched and Bn
p = An

p whenever
fnp = p, then A and B are β-Hölder cohomologous.

Our approach to the proof is inspired by [Pa99, Schm99, PWa01]. An important role
is played by the following observation.
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Proposition 4.11. [S15] Let A and B be two fiber bunched cocycles and let C be a
β-Hölder continuous conjugacy between A and B. Then C intertwines the holonomies
for A and B, that is,

HA, s/u
x,y = C(y) ◦HB, s/u

x,y ◦ C(x)−1 for every x ∈ X and y ∈ W s/u(x).

We note, that this result holds for C with the same Hölder exponent β as the one
used in the fiber bunching condition. However, there are examples of fiber bunched
cocycles and conjugacy C that has lower Hölder exponent and does not intertwine their
holonomies [KS16].

Proof. Let x ∈ X and y ∈ W s(x). By iterating x and y forward the problem reduces to
the case of y ∈ W s

loc(x). Since A(x) = C(fx) ◦Bx ◦ C(x)−1, we have

(4.1)

(An
y )−1 ◦An

x = C(y) ◦ (Bn
y )−1 ◦ C(fny)−1 ◦ C(fnx) ◦Bn

x ◦ C(x)−1 =

= C(y) ◦ (Bn
y )−1 ◦ (Id + rn) ◦Bn

x ◦ C(x)−1 =

= C(y) ◦ (Bn
y )−1 ◦Bn

x ◦ C(x)−1 + C(y) ◦ (Bn
y )−1 ◦ rn ◦Bn

x ◦ C(x)−1.

Since C is Hölder continuous and y ∈ W s
loc(x), we can estimate

‖rn‖ = ‖C(fny)−1 ◦ C(fnx)− Id‖ ≤ ‖C(fny)−1‖ · ‖C(fnx)− C(fny)‖ ≤
≤ c1 dist(fnx, fny)β ≤ c1 (νny )β.

Properties (H3) and (H4) of holonomies imply that there is a constant c2 such that

‖Bn
x‖ ≤ c2‖Bn

y‖ for all x ∈ X, y ∈ W s
loc(x), and n ∈ N.

Using estimates above and fiber bunching of the cocycle B, we obtain

‖(Bn
y )−1 ◦ rn ◦Bn

x‖ ≤ ‖(Bn
y )−1‖ · ‖rn‖ · c3 ‖Bn

y‖ ≤
≤ c4 ‖(Bn

y )−1‖ · ‖Bn
y‖ · (νny )β ≤ c5θ

n → 0 as n→∞.

Therefore the last term in (4.1) tends to 0.
Since lim

n→∞
(An

y )−1 ◦ An
x = HA,s

x,y and lim
n→∞

(Bn
y )−1 ◦ Bn

x = HB,s
x,y , passing to the limit in

(4.1) we obtain intertwining of the holonomies. �

Let C be as in the proposition and let C(x0) be given for some x0 ∈ X. It follows
that for any y ∈ W s(x0),

(4.2) C(y) = HB,s
y,x ◦ C(x0) ◦HA,s

x,y .

Since the stable manifold W s(x0) is dense in X and C is Hölder continuous, such C is
uniquely determined by its value at x0.

Outline of the proof of Theorem 4.9. Since A is fiber bunched and B has conjugate
periodic data with bounded C(p), the cocycle B is also fiber bunched by Proposition 5.11.
Therefore both cocycles have holonomies.

First, let us consider the case when the point p0 is fixed. We conjugate the cocycle
B by C(p0) and thus reduce the question to that of two cocycles with the same value
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at p0 and C(p0) = Id. We still denote them A and B. Following (4.2) we construct
conjugacies between A and B along the stable and unstable manifolds of p0 as

Cs(x) = HA,s
p0, x
◦ C(p0) ◦HB,s

x, p0
= HA,s

p0, x
◦HB,s

x, p0
for x ∈ W s(p0),

Cu(x) = HA,u
p0, x
◦ C(p0) ◦HB,u

x, p0
= HA,u

p0, x
◦HB,u

x, p0
for x ∈ W u(p0).

It is easy to verify that they are indeed conjugacies on the corresponding manifolds.
The main part of the proof is to show that if x is a homoclinic point for p0, that is,
x ∈ W s(p0) ∩W u(p0), then

(4.3) HA,s
x,p0
◦HA,u

p0,x
= HB,s

x,p0
◦HB,u

p0,x
, that is Cs(x) = Cu(x)

def
= C̄(x).

To do this, we consider the orbit segment {f−mx, . . . , x, . . . fn(x)} with sufficiently large
m and n. Since both f−mx and fn(x) are close to p0, by Anosov Closing Lemma 2.1
there exists a periodic point q close to p0 whose iterates follow this orbit segment.
Since q is close to p0, C(q) is Hölder close to C(p0) = Id. Using the assumption that
C(q) conjugates the periodic values of A and B at q and carefully estimating the orbit
products one can establish (4.3) in the limit as m,n→∞.

After (4.3) is proven, it is not difficult to show that the function C̄ is β-Hölder
continuous on the set of homoclinic points, and hence it can be extended to a Hölder
continuous function on X. It is clear from the construction that if A(x),B(x) ∈ G0 for
all x and C(p0) ∈ G0, then the holonomies and C̄ also take values in G0.

In the case of a periodic point p0 = fm(p0), the above argument gives a conjugacy
C̄ between the cocycles Am and Bm over the map fm. Then an additional argument
shows that C̄ is also a conjugacy between A and B. �

We also obtained a result for a constant linear cocycle and its perturbation without the
fiber bunching assumption. It is useful in the study of rigidity of Anosov automorphisms.

Corollary 4.12. [S15] Let A be a constant GL(d,R)-valued cocycle, and let B be a
Hölder continuous cocycle sufficiently close to A. If A and B have conjugate periodic
data and C(p) is Hölder continuous at a fixed or periodic point p0, then they are Hölder
continuously cohomologous.

Outline of the proof. Let A(x) = A be the generator of A. Let ρ1 < · · · < ρ` be the
distinct moduli of the eigenvalues of A and let Rd = EA

1 ⊕· · ·⊕EA
` be the corresponding

invariant splitting into the direct sum of the generalized eigenspaces. We denote Ai =
A|EA

i . It follows that for any ε > 0 there exists Cε such that

C−1ε (ρi − ε)n ≤ ‖Ani u‖ ≤ Cε(ρi + ε)n for any unit vector u ∈ EA
i ,

and hence the cocycle Ai generated by Ai is fiber bunched for any β > 0. Moreover, any
cocycle B with generator B sufficiently C0 close to A has the corresponding invariant
splitting Rd = EB

1 (x)⊕· · ·⊕EB
` (x), which is close to that of A and is β-Hölder for some

β > 0. The corresponding restrictions Bi satisfy similar estimates and hence are also
fiber bunched. Since the conjugacy C(p) maps EA

i (p) to EB
i (p), the cocycles Ai and Bi

have conjugate periodic data. Hence by Theorem 4.9 they are conjugate via a Hölder
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continuous function Ci, and we obtain a conjugacy between A and B as the direct sum
of Ci. �

4.3. Hölder continuity of a measurable conjugacy. Fiber bunching of two cocycles
does not guarantee continuity of a measurable conjugacy between them. An example
of GL(2,R)-valued cocycles which are measurably but not continuously cohomologous
was constructed in [PWa01]. In the example, both generators can be made arbitrarily
close to the identity, and hence the cocycles are fiber bunched.

Example 4.13. [PWa01] Arbitrarily close to the identity, there exist smooth functions

A(x) =

[
α(x) β

0 1

]
and B(x) =

[
α(x) 0

0 1

]
such that the corresponding cocycles A

and B are measurably, but not continuously cohomologous.

Outline of the construction. Let f be an Anosov automorphism, and let x0 be a fixed
point. Let α(x) be a smooth function such that α(x0) = 1 and 1 − ε < α(x) < 1 for
all x 6= x0, and let β = ε. Since the matrices A(x0) and B(x0) are not conjugate, the
cocycles A and B are not continuously cohomologous.

A measurable conjugacy is constructed in the form C(x) =

[
1 c(x)
0 1

]
. Then

A(x) = C(fx)B(x)C(x)−1 is equivalent to

[
α(x) β

0 1

]
=

[
α(x) c(fx)− α(x)c(x)

0 1

]
.

A function c such that c(fx) = β + α(x)c(x) is obtained as a series. Let

cm(x) = β ·
(
1 + α(f−1x) + α(f−1x)α(f−2x) + · · ·+ α(f−1x) · · ·α(f−mx)

)
.

By the Birkhoff Ergodic Theorem, (α(f−1x) · · ·α(f−m(x))1/m → α < 1 a.e. It follows
that the sequence {cm(x)} converges to a limit c(x) a.e., and the function c is measurable
as a limit of continuous functions. The functions cm satisfy the equation cm(fx) =
β + α(x)cm−1(x), and passing to the limit it follows that c(fx) = β + α(x)c(x). �

Since the answer to Question 4.6 for fiber bunched cocycles is negative in general, we
make a stronger assumption that one of the cocycles is uniformly quasiconformal.

Theorem 4.14. [S15] Let A and B be linear cocycles, and let µ be an ergodic f -invariant
measure on X with full support and local product structure. Suppose that A is fiber
bunched and B is uniformly quasiconformal. Then any µ-measurable conjugacy between
A and B is β-Hölder continuous, that is, it coincides with a β-Hölder continuous con-
jugacy on a set of full measure.

A measure has local product structure if it is locally equivalent to the product of its
conditional measures on the local stable and unstable manifolds. Examples of ergodic
measures with full support and local product structure include the measure of maximal
entropy, more generally Gibbs (equilibrium) measures of Hölder continuous potentials,
and the invariant volume if it exists [PWa01].
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Outline of the proof of Theorem 4.14. Let C be a µ-measurable conjugacy between A

and B. The key step in the proof is to show that C intertwines holonomies of A and B

on a set of full measure, more precisely, there exists a set Y ⊂ X, µ(Y ) = 1, such that

(4.4) HA,s
x,y = C(y) ◦HB,s

x,y ◦ C(x)−1 for all x, y ∈ Y such that y ∈ W s(x).

This yields C(y) = HA,s
x,y ◦ C(x) ◦ HB,s

x,y and then Hölder continuity of the holonomies
easily implies essential Hölder continuity of C along W s

loc, that is,

d(C(x), C(y)) ≤ c dist(x, y)β for all x, y ∈ Y such that y ∈ W s
loc(x),

where c does not depend on x and y. Similarly one obtains essential Hölder continuity
of C along W u

loc. Then global Hölder continuity of C is obtained using the local prod-
uct structure of stable and unstable manifolds and the local product structure of the
measure.

To establish (4.4) we consider x ∈ X and y ∈ W s
loc(x) and, as in the proof of Propo-

sition 4.11, we obtain

(4.5) (An
y )−1 ◦An

x = C(y) ◦ (Bn
y )−1 ◦Bn

x ◦ C(x)−1 + C(y) ◦ (Bn
y )−1 ◦ rn ◦Bn

x ◦ C(x)−1,

where

‖rn‖ ≤ ‖C(fny)−1‖ · ‖C(fnx)− C(fny)‖.
Since C is µ-measurable, by Lusin’s theorem there exists a compact set S ⊂ X with

µ(S) > 1/2 such that C is uniformly continuous on S and hence ‖C‖ and ‖C−1‖ are
bounded on S. Let Y be the set of points in X for which the frequency of visiting
S equals µ(S) > 1/2. By Birkhoff Ergodic Theorem µ(Y ) = 1. If x and y are in Y ,
there exists a sequence {ni} such that fnix and fniy are in S for all i. It follows that
‖rni‖ → 0 as i→∞. The product

‖(Bn
y )−1‖ · ‖Bn

x‖ ≤ ‖H
B,s
fnx, fny‖ · ‖(B

n
x)−1‖ · ‖HB,s

x,y ‖ · ‖Bn
x‖

is uniformly bounded since the cocycle B is uniformly quasiconformal. Thus for every
x and y in Y such that y ∈ W s

loc(x), the second term in (4.5) tends to 0 along a
subsequence, and (4.4) follows. �

The next result extends Theorem 4.14 to the infinite dimensional setting. One of the
difficulties here is that the space (GL(V ), d) is not separable even if V is. To use the
tools of the theory of measurable functions, such as Lusin’s theorem, we work with the
strong operator topology, i.e., the topology of pointwise convergence. We assume that
B takes values in a precompact set, which for a finite dimensional V is equivalent to
uniform boundedness of B in (GL(V ), d).

Theorem 4.15. [S17] Let A and B be GL(V )-valued cocycles. Suppose that the Banach
space V is separable, A is fiber bunched and B takes values in a subset of GL(V ) that is
precompact in the strong operator topology. Let µ be an ergodic invariant measure with
full support and local product structure. Then any µ-measurable conjugacy between A

and B coincides with a β-Hölder continuous conjugacy on a set of full measure.
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The µ-measurability of the conjugacy means that the preimage of each Borel set in
GL(V ) is µ-measurable and the conjugacy equation holds µ-almost everywhere. We
note that Borel σ-algebra in GL(V ) is the same for the metric d and for the strong
operator topology.

5. Periodic approximation of Lyapunov exponents
and growth estimates for cocycles

5.1. Definitions and results. First we consider a β-Hölder continuous linear cocycle
A on a finite-dimensional vector bundle E over a hyperbolic system (X, f). We discuss
Lyapunov exponents of A with respect to an f -invariant ergodic Borel probability mea-
sure µ on X. The vector bundle E is trivial on a set of full measure and hence A can be
viewed as a GL(d,R)-valued cocycle on a set of full measure. Continuity of the cocycle
implies that the integrability assumption in the theorem below is satisfied, and so we
obtain the Lyapunov exponents of A and the corresponding Lyapunov decomposition
of E on a set of full measure.

Theorem 5.1 (Oseledets Multiplicative Ergodic Theorem (MET)). [O68]
Let f be an invertible ergodic measure-preserving transformation of a Lebesgue prob-
ability space (X,µ). Let A be a measurable GL(d,R)-valued cocycle over f satisfying
log ‖Ax‖ ∈ L1(X,µ) and log ‖A−1x ‖ ∈ L1(X,µ).

Then there exist numbers λ1 < · · · < λ`, an f -invariant set Λ with µ(Λ) = 1, and
an A-invariant Lyapunov decomposition Ex = E1x ⊕ · · · ⊕ E `x for x ∈ Λ such that

(i) lim
n→±∞

1
n

log ‖An
xv‖ = λi for any i = 1, . . . , ` and any 0 6= v ∈ E ix, and

(ii) lim
n→±∞

1
n

log | detAn
x| =

∑`
i=1miλi, where mi = dim E ix.

The numbers λ1, . . . , λ` are called the Lyapunov exponents of A with respect to µ. The
exponents and the decomposition depend on the choice of µ.

By Lyapunov exponents of A at a periodic point p we mean the Lyapunov exponents
of A with respect to the invariant measure µp on the orbit of p. They equal (1/k) of the
logarithms of the absolute values of the eigenvalues of Ak

p, where k is a period of p. The
following result on periodic approximation of Lyapunov exponents for finite-dimensional
E was established by Kalinin.

Theorem 5.2. [K11] Let (X, f) be a hyperbolic dynamical system, let A be a Hölder
continuous linear cocycle over f , and let µ be an ergodic invariant measure for f .

Then the Lyapunov exponents λ1 ≤ · · · ≤ λd of A with respect to µ, listed with
multiplicities, can be approximated by the Lyapunov exponents of A at periodic points.
More precisely, for any ε > 0 there exists a periodic point p ∈ X for which the Lyapunov

exponents λ
(p)
1 ≤ · · · ≤ λ

(p)
d of A satisfy |λi − λ(p)i | < ε for i = 1, . . . , d.

For GL(V )-valued cocycles with infinite-dimensional V , there is no Oseledets MET
in general, but upper and lower Lyapunov exponents λ(A, µ) and χ(A, µ) of A
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with respect to µ can be defined as follows.

(5.1)
λ(A, µ) = lim

n→∞

1

n
log ‖An

x‖ for µ-a.e. x ∈ X,

χ(A, µ) = lim
n→∞

1

n
log ‖(An

x)−1‖−1 for µ-a.e. x ∈ X.

These limits exist and are constant µ almost everywhere. Indeed, the sequence of func-
tions an(x) = 1

n
log ‖An

x‖ satisfies

(5.2) an+m(x) ≤ am(x) + an(fmx) for all x ∈ X and n,m ∈ N,
that is, {an(x)} is a subadditive cocycle. By the Subaddititive Ergodic Theorem for
µ-a.e. x ∈ X

lim
n→∞

an(x)

n
= lim

n→∞

an(µ)

n
= inf

{
an(µ)

n
: n ∈ N

}
, where an(µ) =

∫
X

an(x) dµ.

This limit is called the exponent of the subadditive cocycle. A similar argument applies
to the second limit in (5.1)

If V is finite-dimensional, then λ(A, µ) and χ(A, µ) are precisely the largest and
smallest of the Lyapunov exponents given by the Oseledets MET, that is, λ(A, µ) = λ`
and χ(A, µ) = λ1.

In the infinite-dimensional setting, it is not always possible to approximate λ(A, µ)
and χ(A, µ) by Lyapunov exponents at periodic points. The following proposition is
based on an example by Gurvits of a pair of operators whose joint spectral radius is
greater than the generalized spectral radius [Gu95].

Proposition 5.3. [KS17] There exists a locally constant cocycle A over a full shift on
two symbols and an ergodic invariant measure µ such that λ(A, µ) > supµp λ(A, µp),
where the supremum is taken over all uniform measures µp on periodic orbits.

Nonetheless, the upper and lower exponents can be approximated in terms of norms
at periodic points as follows.

Theorem 5.4. [KS17] Let (X, f) be a hyperbolic system, let µ be an ergodic f -invariant
measure on X, and let A be a Hölder continuous GL(V )-valued cocycle over f .

Then for any ε > 0 there exists a periodic point p = fkp such that∣∣∣∣λ(A, µ)− 1

k
log ‖Ak

p‖
∣∣∣∣ < ε and

∣∣∣∣χ(A, µ)− 1

k
log ‖(Ak

p)
−1‖−1

∣∣∣∣ < ε.

Moreover, for any N ∈ N there exists such p = fkp with k > N .

We note that for the measures µp on the orbit of p = fkp,

(5.3)
λ(A, µp) = lim

m→∞

1

mk
log ‖(Ak

p)
m‖ =

1

k
log lim

m→∞
‖(Ak

p)
m‖1/m =

=
1

k
log (spectral radius of Ak

p) ≤
1

k
log ‖Ak

p‖,
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and the inequality can be strict, even in the finite-dimensional case. Also, χ(A, µp) ≥
1
k

log ‖(Ak
p)
−1‖−1. Thus for a point p as in the theorem we have one sided estimates

λ(A, µp) < λ(A, µ) + ε and χ(A, µp) > χ(A, µ)− ε.

Remark 5.5. Theorems 5.2 and 5.4 can be strengthened to conclude the existence of a
periodic point p = fkp which gives simultaneous approximation for finitely many cocycles
A(i), i = 1, . . . ,m, over f with values in GL(di,R) and GL(Vi), respectively.

In [KS18] we extended the periodic approximation results in [WaSu10, K11, KS17]
to non-uniformly hyperbolic setting. We recall that a measure is hyperbolic if all its
Lyapunov exponents for the derivative cocycle Df are nonzero, and a periodic point p
is hyperbolic if the corresponding measure µp is hyperbolic.

Theorem 5.6. [KS18] Let f be a C1+Hölder diffeomorphism of a compact manifold X,
let µ be a hyperbolic ergodic f -invariant measure on X, and let A be a GL(V )-valued
Hölder continuous cocycle over f .

(i) If V = Rd, then the Lyapunov exponents λ1 ≤ · · · ≤ λd of A with respect to µ,
listed with multiplicities, can be approximated by the Lyapunov exponents of A

at a hyperbolic periodic point p as in Theorem 5.2.

(ii) For any Banach space V , the upper and lower Lyapunov exponents λ and χ of
A with respect to µ can be approximated as in Theorem 5.4, where p = fkp is a
hyperbolic periodic point.

5.2. Outline of the proof of Theorem 5.4. We consider a full measure set Λ = Λµ

of points x ∈ X such that

lim
n→∞

1

n
log ‖An

f−nx‖ = λ = lim
n→∞

1

n
log ‖An

x‖ and

lim
n→∞

1

n
log ‖A−nx ‖ = −χ = lim

n→∞

1

n
log ‖(An

x)−1‖.

We construct a certain version of Lyapunov, or adapted, norm which allows us to control
the norms of Ax and (Ax)

−1.
Let γ be as in the Anosov Closing Lemma 2.1 and β be the Hölder exponent of A.

We fix ε such that 0 < ε < ε0 = βγ/4. For a point x ∈ Λ we define the ε-Lyapunov
norm ‖.‖x = ‖.‖x,ε on Vx as follows. For u ∈ Vx,

(5.4) ‖u‖x = ‖u‖x,ε =
∞∑
n=0

‖An
x(u)‖ e−(λ+ε)n +

∞∑
n=1

‖A−nx (u)‖ e(χ−ε)n.

By the definition of Λ, both series converge exponentially.
For any points x, y ∈ Λ and any linear map A : Vx → Vy we denote its operator norm

with respect to the Lyapunov norms by

‖A‖y←x = sup {‖A(u)‖y,ε : u ∈ Vx, ‖u‖x,ε = 1}
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and estimate it using (5.4)

(5.5) ‖Ax‖fx←x ≤ eλ+ε and ‖A−1x ‖f−1x←x ≤ e−χ+ε.

Since the Lyapunov norm depends only measurably on x, we provide a comparison
with the standard norm. In [KS17, Proposition 3.1] we showed that there exists an
f -invariant set R ⊂ Λ with µ(R) = 1 and a measurable function K = Kε such that for
all x ∈ R
(5.6) ‖u‖ ≤ ‖u‖x,ε ≤ K(x)‖u‖ for all u ∈ Ex, and

(5.7) K(x)e−ε|n| ≤ K(fnx) ≤ K(x)eε|n| for all n ∈ Z.
Also, for any points x, y ∈ R the inequality (5.6) yields

(5.8) ‖A‖y←x ≤ K(y)‖A‖ and ‖A‖ ≤ K(x)‖A‖y←x.
We let Rt = {x ∈ R : K(x) ≤ t}. Then µ(Rt)→ 1 as t→∞.

An important role in the arguments is played by the following estimate of ‖An
y‖ along

an orbit close to a regular one. We recall that ε < βγ, where γ is as in Lemma 2.1.

Lemma 5.7. There exists a constant c = c(A, βγ − ε) such that for any point x in Rt

with fmx in Rt and any point y ∈ X such that the orbit segments x, fx, . . . , fmx and
y, fy, . . . , fmy satisfy with some δ > 0

(5.9) dist(f ix, f iy) ≤ δe−γ min{i,m−i} for every i = 0, . . . ,m

we have for all 0 ≤ n ≤ m

(5.10) ‖An
y‖ ≤ t ‖An

y‖fnx←x ≤ t ec tδ
β

en(λ+ε).

A similar estimate can be obtained for ‖(An
y )−1‖. We note that y may not be a regular

point, and so we consider the norm of the linear map An
y with respect to the Lyapunov

norms at x and fnx.

Proof. We denote xi = f ix and yi = f iy, i = 0, . . . ,m, and use (5.5) to estimate the
Lyapunov norm for 0 < n ≤ m

(5.11)

‖An
y‖xn←x0 ≤

n−1∏
i=0

‖Ayi‖xi+1←xi ≤
n−1∏
i=0

‖Axi‖xi+1←xi · ‖(Axi)
−1 ◦Ayi‖xi←xi

≤ en(λ+ε)
n−1∏
i=0

‖ (Axi)
−1 ◦Ayi ‖xi←xi = en(λ+ε)

n−1∏
i=0

‖ Id + ∆i ‖xi←xi .

Since Ax is β-Hölder and ‖(Ax)
−1‖ is uniformly bounded,

‖∆i‖ ≤ ‖(Axi)
−1‖ · ‖Ayi −Axi‖ ≤M ′dist(xi, yi)

β ≤M ′ (δe−γmin{i,m−i})β ,
where the constant M ′ depends only on the cocycle A. Since both x and fmx are in Rt

we have K(xi) ≤ teεmin{i,m−i} by (5.7), so using the first part of (5.8) we conclude that

‖∆i‖xi←xi ≤ K(xi)‖∆i‖ ≤ teεmin{i,m−i}M ′δβe−γβmin{i,m−i} = M ′t δβ e(ε−βγ) min{i,m−i}.
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Taking logarithm in (5.11) and using the above inequality we obtain

log ‖An
y‖xn←x0 − n(λ+ ε) ≤

n−1∑
i=0

log (‖ Id + ∆i ‖xi←xi) ≤
n−1∑
i=0

log (1 + ‖∆i ‖xi←xi)

≤
n−1∑
i=0

‖∆i ‖xi←xi ≤M ′tδβ
n−1∑
i=0

e(ε−αγ) min{i,m−i} ≤M ′tδβ · 2
∞∑
i=0

e(ε−βγ)i = c tδβ

since ε < βγ. The constant c depends only on A and (βγ − ε). We conclude that

(5.12) ‖An
y‖xn←x0 ≤ ec tδ

β

en(λ+ε).

Since K(x0) ≤ t, using the second part of (5.8) we can also estimate the standard norm

‖An
y‖ ≤ K(x0)‖An

y‖xn←x0 ≤ tec tδ
β

en(λ+ε).

�

Now we can obtain a point p = fkp such that 1
k

log ‖Ak
p‖ ≤ λ(A, µ) + 2ε as follows.

We take Rt with a sufficiently large t and x ∈ Rt so that fkx ∈ Rt and is sufficiently
close to x to apply Anosov Closing Lemma. Then there exists p = fkp satisfying (5.9).
It follows from (5.10) that for a sufficiently large k we have

(5.13)
1

k
log ‖Ak

p‖ ≤
1

k
log(t ec tδ

α

) + (λ+ ε) < λ+ 2ε.

Now we outline how to find a point p = fkp for which 1
k

log ‖Ak
p‖ also satisfies a

corresponding lower estimate. In addition to Lemma 5.7, this part of the argument uses
an approach developed in [GrGu17] and Karlsson-Margulis Lemma [KaM99, Proposition
4.2]. The latter provides indices n for which a sub-additive cocycle behaves almost
additively in a certain sense. For future reference, we formulate its generalization for
the case of several cocycles [KS18].

Proposition 5.8. [KaM99, KS18] Let a
(1)
n (x), . . . , a

(m)
n (x) be integrable subadditive

cocycles with exponents λ(1) > −∞, . . . , λ(m) > −∞, respectively, over an ergodic
measure-preserving system (X, f, µ). Then there exists a set E ⊂ X with µ(E) = 1 such
that for each x ∈ E and each ε > 0 there exists an integer L = L(x, ε) so that the set
S = S(x, ε, L) of integers n satisfying the following condition is infinite:

(5.14) a(j)n (x)− a(j)n−i(f ix) ≥ (λ(j) − ε)i for all L ≤ i ≤ n and 1 ≤ j ≤ m.

We apply this proposition to the sub-additive cocycle an(x) = log ‖An
x‖, consider a

typical point x ∈ Rt, and take a sufficiently large n ∈ S(x, ε, L). Then we have

(5.15) ‖An
x‖ · ‖An−i

f ix
‖ ≥ e(λ−ε)i for all i such that L ≤ i ≤ n.

Now we would like to find k so that fkx ∈ Rt and is sufficiently close to x to apply
Anosov Closing Lemma, and also so that the ratio k/n is bounded, specifically,

n(1 + σ) ≤ k ≤ n(1 + 2σ), where σ = 4ε/(βγ).



LINEAR COCYCLES OVER HYPERBOLIC SYSTEMS 20

Existence of such k relies on [GrGu17, Lemma 8] or its refinement [KS18, Lemma 5.1].
The upper bound on k ensures that ‖Ak

p‖ and ‖An
p‖ are roughly comparable, so that

it suffices to estimate ‖An
p‖ and show that it must grow as ‖An

x‖, with exponential rate

at least λ − ε. For this it suffices to prove that ‖An
x − An

p‖ ≤ 1
2
‖An

x‖. Thus the main
part of the argument is to estimate ‖An

x −An
p‖. For this we write

An
x −An

p = An−1
x1
◦ (Ax −Ap) + (An−1

x1
−An−1

p1
) ◦Ap =

= · · · =
n−1∑
i=0

An−(i+1)
xi+1

◦ (Axi −Api) ◦Ai
p, and hence

‖An
x −An

p‖ ≤
n−1∑
i=0

‖An−(i+1)
xi+1

‖ · ‖Axi −Api‖ · ‖Ai
p‖.

The third term in the product can be estimated by Lemma 5.7, ‖Ai
p‖ ≤ t ec tδ

α
ei(λ+ε).

The second term is estimated using Hölder continuity of A and exponential closeness of
the trajectories

‖Axi −Api‖ ≤ c dist(f ix, f ip)β ≤ c e−γβmin{i,k−i}δβ,

To estimate the first term, we use our choice of n and apply (5.15) to get

‖An−(i+1)
xi+1

‖ ≤ ‖An
x‖ · e−(i+1)(λ−ε) for all L ≤ i ≤ n.

Combining these inequalities and estimating the first L terms separately, we obtain

‖An
x −An

p‖ ≤ c(δ) ‖An
x‖

n−1∑
i=0

e2iεe−γβmin{i,k−i}, where c(δ)→ 0 as δ → 0.

To complete the argument we need an estimate for the sum independent of k and n.
This follows from the lower bound k ≥ (1 + σ)n, which ensures that

βγmin{i, k − i} ≥ 4εi for i = 0, . . . , n.

This completes the outline of the estimate from below, 1
k

log ‖Ak
p‖ ≥ λ− c′ε. The upper

estimate (5.13) also holds for the same x and k since both x, fkx are in Rt. This
completes the approximation of the upper Lyapunov exponent λ in Theorem 5.4.

The arguments above allow us to obtain simultaneous approximation of the upper
exponents for several cocycles A(1), . . . ,A(m) as in Remark 5.5. The only modification
needed is to consider the intersection of the corresponding regular sets Rt,(j) for all A(j)

and use Proposition 5.8 for m subadditive cocycles a(j)(x) = log ‖A(j)‖, j = 1, . . . ,m.
The same argument with minor modifications can be also applied to the cocycle A−1 to
obtain a simultaneous approximation of the lower exponent χ. �

5.3. Outline of the proof of Theorem 5.2. In place of the Lyapunov norm given by
(5.4), we use the norm generated by the usual Lyapunov scalar product 〈·, ·〉x,ε defined
as follows. For a fixed ε > 0 and for any x in the set Λ of the Lyapunov regular points
from Theorem 5.1,



LINEAR COCYCLES OVER HYPERBOLIC SYSTEMS 21

〈u, v〉x,ε = 0 if u ∈ E ix, v ∈ E jx, i 6= j, and

〈u, v〉x,ε = d
∑
n∈Z
〈An

x u, A
n
x v 〉 e−2λin−ε|n| if u, v ∈ E ix, i = 1, . . . ,m.

The properties of this norm are given in [BaPe, Sections 3.5.1-3.5.3].
We take R′t = {x ∈ Λ : K ′(x) ≤ t}, where and K ′(x) is a function similar to K(x)

which gives the estimate (5.6) for this Lyapunov norm.
First we approximate the largest exponent λ`. We again take x ∈ R′t and k so that

fkx ∈ R′t, k and t are large enough, and fkx is sufficiently close to x. Then we obtain a
periodic point p = fkp by Anosov Closing Lemma. As in the approximation of λ from
above in Theorem 5.4, we obtain estimate (5.13) which, using (5.3), also implies the
desired upper estimate

λ`(A, µp) ≤
1

k
log ‖Ak

p‖ < λ` + 2ε.

The lower estimate λ`(A, µp) > λ` − 3ε is obtained by constructing a Ak
p-invariant

cone K ⊆ Ep where vectors are expanded by a factor at least ek(λ`−3ε), see [K11]. The
cone K is defined as a cone of vectors whose direction is close, in the Lyapunov metric
at x, to the Lyapunov subspace E `x corresponding to λ`. Then for any vector in K its
forward Lyapunov exponent is at least λ`−3ε, and hence the same is true for λ`(A, µp).

To approximate all Lyapunov exponents of A we consider cocycles ∧iA induced by
A on the i-fold exterior powers ∧iRd, for i = 1, . . . , d. The largest Lyapunov exponent
of ∧iA is (λd + · · · + λd−i+1), where λ1 ≤ · · · ≤ λd are the Lyapunov exponents of A
listed with multiplicities. If a periodic point p = fkp satisfies

|(λd + · · ·+ λd−i+1)− (λ
(p)
d + · · ·+ λ

(p)
d−i+1)| ≤ 3ε for i = 1, . . . , d,

then we obtain the approximation |λi − λ(p)i | ≤ 3dε for all i = 1, . . . , d, completing the
proof of Theorem 5.2.

A similar argument shows that one can obtain a simultaneous approximation of all
Lyapunov exponents for several cocycles. �

5.4. Growth estimates for cocycles. As a corollary of Theorem 5.4, we obtain
growth estimates for the norm and the quasiconformal distortion of a cocycle A in
terms of the growth at periodic points.

Corollary 5.9. [S17] A be a Hölder continuous Banach cocycle over f . Then

(i) lim
n→∞

sup
{
‖An

x‖1/n : x ∈ X
}

= lim sup
k→∞

sup
{
‖Ak

p‖1/k : p = fkp ∈ X
}
.

In particular, if for some numbers C and s we have ‖Ak
p‖ ≤ Cesk whenever

p = fkp, then for each ε > 0 there exists a number Cε such that

‖An
x‖ ≤ Cε e

(s+ε)n for all x ∈ X and n ∈ N.

(ii) lim
n→±∞

sup
{
QA(x, n)1/|n| : x ∈ X

}
= lim sup

k→∞
sup

{
QA(p, k)1/k : p = fkp ∈ X

}
.

In particular, if for some numbers C and s we have QA(p, k) ≤ Cesk whenever
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p = fkp, then for each ε > 0 there exists a number C ′ε such that

QA(x, n) ≤ C ′ε e
(s+ε)|n| for all x ∈ X and n ∈ Z.

The number

λ̂(A) = lim
n→∞

sup

{
1

n
log ‖An

x‖ : x ∈ X
}

gives the maximal exponential growth rate for a cocycle A. Part (i) of Corollary 5.9 can
also be deduced from [GrGu17], where the authors obtained a generalization of Livsic
periodic point theorem for Banach cocycles, and in particular showed that for each ε > 0
there exists a periodic point p = fkp such that 1

k
log ‖Ak

p‖ > λ̂(A)− ε.
Outline of the proof of (ii). Let σ̂(A) and σ̂P (A) be the logarithms of the left-hand side
and the right-hand side of (ii), and let

qn(x) = logQA(x, n) = log ‖An
x‖+ log ‖(An

x)−1‖.

The sequence {qn(x)} is a subadditive cocycle over f , and its exponent with respect
to an ergodic measure µ is γ(q, µ) = λ(A, µ) − χ(A, µ). The sequence of numbers
q̂n = supx∈X qn(x) is subadditive and hence γ̂(q) = lim

n→∞
(q̂n/n) exists. It follows from

[Schr98] that γ̂(q) = supµ γ(q, µ), where the supremum is taken over all ergodic f -
invariant measures, see also [KS13, Proposition 4.9] for a direct proof of a similar result.
Then using Theorem 5.4 we obtain

lim
n→∞

sup
{

logQ(x, n)1/n : x ∈ X
}

= γ̂(q) = sup
µ
γ(q, µ) = sup

µ
(λ(A, µ)− χ(A, µ))

≤ sup

{
1

k
log ‖Ak

p‖+
1

k
log ‖(Ak

p)
−1‖ : p = fkp, k ≥ N

}
= sup

{
1

k
logQA(p, k) : p = fkp, k ≥ N

}
.

It follows that σ̂(A) ≤ σ̂P (A), and the opposite inequality clearly holds.

Now, suppose that Q(p, k) ≤ Cesk whenever p = fkp. Then we have

s ≥ σ̂P (A) = σ̂(A) = γ̂(q) = lim
n→∞

q̂n/n.

It follows that for each ε > 0 there exists N ∈ N such that q̂n ≤ (s+ ε)n for all n > N
and hence Q(x, n) ≤ e(s+ε)n for all x ∈ X and n > N . Taking

C ′ε = max {Q(x, n) : x ∈ X and 1 ≤ n ≤ N },

we obtain Q(x, n) ≤ C ′εe
(s+ε)n for all x ∈ X and n ∈ N. The statements for negative n

follows since Q(x,−n) = Q(f−nx, n) �

In finite dimensional case, using Theorem 5.2, we can similarly obtain growth esti-
mates using the Lyapunov exponents rather than norms.

Corollary 5.10. [K11, S15] A be a Hölder continuous linear cocycle over (X, f).
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(i) If for some number s we have λ`(A, µp) ≤ s for every invariant measure µp on
a periodic orbit, then for each ε > 0 there exists a number Cε such that

‖An
x‖ ≤ Cε e

(s+ε)n for all x ∈ X and n ∈ N.
(ii) If for some s we have λ`(A, µp)− λ1(A, µp) ≤ s for every invariant measure µp

on a periodic orbit, then for each ε > 0 there exists a number C ′ε such that

QA(x, n) ≤ C ′ε e
(s+ε)|n| for all x ∈ X and n ∈ Z.

5.5. Obtaining fiber bunching from periodic data. We recall that in Theorem 4.9
we assumed fiber bunching for only one of the cocycles as fiber bunching for the other
one can be deduced from the conjugacy of their periodic data. Now we explain how this
is done using the results on approximation of Lyapunov exponents.

Proposition 5.11. [S15, S17] Let A and B be Hölder continuous cocycles over (X,f).

(i) If A and B take values in GL(d,R), A is fiber bunched and B has conjugate
periodic data, then B is also fiber bunched.

(ii) If A and B take values in GL(V ), A is fiber bunched and B has conjugate periodic
data with bounded C(p), then B is also fiber bunched.

Part (ii) follows from the next result that establishes fiber bunching of a cocycle from
fiber bunching of its periodic data. Part (i) follows from a similar characterization of
fiber bunching in finite dimensional case using Lyapunov exponents at periodic orbits
[S15, Corollary 4.2].

Proposition 5.12. [S17] Let B be a β-Hölder cocycle over (X, f). Suppose that there

exist numbers θ̃ < 1 and L̃ such that whenever fnp = p,

(5.16) QB(p, n) · (νnp )β < L̃ θ̃n and QB(p,−n) · (ν̂−np )β < L̃ θ̃n.

Then B is fiber bunched.

Outline of the proof. If functions ν(x) = ν and ν̂(x) = ν̂ are constant, then the result
follows immediately from Corollary 5.9 (ii). In general, one can apply an argument as
in the proof of Corollary 5.9 to the sub-additive cocycle q̃n(x) = logQB(x, n) · log νn(x)β

and use simultaneous approximation of exponents as in Remark 5.5. �

6. Boundedness, conformality, and reductions

It is often useful to determine whether a cocycle is cohomologous to one with values
in a smaller group, such as orthogonal or conformal, since cocycles with values in these
groups are relatively well understood. Such reduction problems are highly nontrivial:
Schmidt asked in [Schm99] whether a GL(d,R)-valued cocycle A with ‖An

x‖ uniformly
bounded is Hölder cohomologous to an orthogonal one. In [KS10] we showed this assum-
ing boundedness of the periodic data only. Moreover, we established a general criterium
for a linear cocycle to be isometric or conformal in terms of its periodic data.

In this section we view a linear cocycle A as an automorphism of a vector bundle E
over X with the fiber map Ax : Ex → Efx, and we do not assume triviality of the bundle.
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6.1. Conformal structures. A conformal structure on Rd, d ≥ 2, is a class of
proportional inner products. Since an inner product identifies with a symmetric positive
definite d× d matrix, we can uniquely represent a conformal structure by such a matrix
with determinant 1. The group GL(d,R) acts on Cd via

D(C) = (detDTD)−1/d ·DTC D, where C ∈ Cd and D ∈ GL(d,R).

Its subgroup SL(d,R) acts transitively on Cd since every C ∈ Cd can be expressed as
C = D(Id), where D is the positive square root of C. The stabilizer of the identity
matrix in SL(d,R) is SO(d,R), and thus Cd can be identified with SL(d,R)/SO(d,R).
It is well-know that Cd = SL(d,R)/SO(d,R) is a Riemannian symmetric space with a
certain GL(d,R)-invariant metric of non-positive curvature, see [T86, p.327].

For a vector bundle E → X we can consider a bundle C over X whose fiber Cx is the
space of conformal structures on Ex. Using a background Riemannian metric on E , the
space Cx can be identified with the space of symmetric positive linear operators on Ex
with determinant 1. We equip the fibers of C with the Riemannian metric as above. A
continuous (measurable) section σ of C is called a continuous (measurable) conformal
structure on E . A measurable conformal structure σ is called bounded if the distance
between σ(x) and τ(x) is bounded on X for a continuous conformal structure τ on X.

An invertible linear map A : Ex → Ey induces an isometry from Cx to Cy via

A(C) = (det(A∗A))1/d · (A−1)∗C A−1,
where C ∈ Cx is a conformal structure viewed as an operator, and A∗ is the adjoint of
A. If A : E → E is a linear cocycle over f , we say that a conformal structure σ on E is
A-invariant if

Ax(σ(x)) = σ(fx) for all x ∈ X.

6.2. Conformality and uniform quasiconformality.
Let A be a f linear cocycle over (X, f). We recall that its quasiconformal distortion is

QA(x, n) = ‖An
x‖ · ‖(An

x)−1‖ =
max { ‖An

x(v) ‖ : v ∈ Ex, ‖v‖ = 1 }
min { ‖An

x(v) ‖ : v ∈ Ex, ‖v‖ = 1 }
, x ∈ X, n ∈ Z.

The cocycle is called uniformly quasiconformal if QA(x, n) ≤ K for all for all x and n,
and it is called conformal if QA(x, n) = 1 for all x and n.

Clearly, A is conformal with respect to a Riemannian metric on E if and only if it
preserves the conformal structure associated with this metric. We note that the notion
of uniform quasiconformality does not depend on the choice of a continuous metric on E .
So if A preserves a continuous or bounded conformal structure on E then A is uniformly
quasiconformal on E with respect to any continuous metric on E . The theorem below
shows that the converse is also true.

Theorem 6.1. [S02, KS10] Let A : E → E be a Hölder continuous linear cocycle over a
hyperbolic dynamical system (X, f). If A is uniformly quasiconformal then it preserves
a Hölder continuous conformal structure on E, equivalently, A is conformal with respect
to a Hölder continuous Riemannian metric on E.
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The first step of the proof is obtaining a bounded measurable conformal structure.
We apply observations made by Sullivan and Tukia for quasiconformal group actions.

Proposition 6.2. Let f be a homeomorphism of a compact metric space X and let
A : E → E be a continuous linear cocycle over f . If A is uniformly quasiconformal then
it preserves a bounded Borel measurable conformal structure σ on E.

Proof. Let τ be a continuous conformal structure on E . We denote by τ(x) the conformal
structure on Ex, x ∈ X. We consider the set

S(x) = { (A−nfnx)(τ(fnx)) : n ∈ Z }
in Cx, the space of conformal structures on Ex. Since A is uniformly quasiconformal, the
sets S(x) have uniformly bounded diameters. Since the space Cx is simply connected
and has non-positive curvature, every non-empty bounded set in Cx is contained in a
unique closed ball of the smallest radius, see for example [T86, Lemma E]. The center
of this ball is called a circumcenter of the set. For each x ∈ X we denote by σ(x) the
circumcenter of S(x).

It follows from the construction that the conformal structure σ is A-invariant and its
distance from τ is bounded. For any k ≥ 0, the set

Sk(x) = { (A−nfnx)(τ(fnx)) : |n| ≤ k}
depends continuously on x in Hausdorff distance, and so does the center σk(x) of the
smallest ball containing Sk(x). Since Sk(x)→ S(x) as k →∞ for any x, the conformal
structure σ is the pointwise limit of continuous conformal structures σk(x). Hence σ is
Borel measurable. �

To complete the proof of Theorem 6.1 we use Theorem 6.3 below to obtain Hölder
continuity of σ. The theorem applies since uniform quasiconformality of A implies its
fiber bunching.

Theorem 6.3. [KS13] Let (X, f) be a hyperbolic dynamical system, let A : E → E
be a β-Hölder fiber bunched linear cocycle over f , and let µ be an ergodic f -invariant
probability measure with full support and local product structure. Then any A-invariant
µ-measurable conformal structure on E is β-Hölder.

Outline of the proof. We recall that a fiber bunched cocycle has stable and unstable
holonomies, see Proposition 3.3. The main part of the proof is establishing essential
invariance of the conformal structure under holonomies.

Lemma 6.4. Let Hs be the stable holonomy for a linear cocycle A. If τ is a µ-measurable
A-invariant conformal structure then τ is essentially Hs-invariant, i.e., there is a set
G ⊂ X of full measure such that τ(y) = Hs

xy(τ(x)) for all x, y ∈ G such that y ∈ W s
loc(x).

Proof. Let xi = f ix. Since An
y induces an isometry and τ is A-invariant, we obtain

dist (τ(y), Hs
xy(τ(x))) = dist(An

y (τ(y)),An
yH

s
xy(τ(x))) =

= dist(τ(yn), Hs
xnynA

n
x(τ(x))) = dist(τ(yn), Hs

xnyn(τ(xn))) ≤
≤ dist(τ(yn), τ(xn)) + dist(τ(xn), Hs

xnyn(τ(xn))).
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Since τ is µ-measurable, by Lusin’s Theorem there exists a compact set S ⊂ X with
µ(S) > 1/2 on which τ is uniformly continuous and hence bounded. Let G be the set
of points in X for which the frequency of visiting S equals µ(S) > 1/2. By Birkhoff
Ergodic Theorem, µ(G) = 1.

Suppose that both x and y are in G. Then there exists a sequence {ni} such
that both xni and yni are in S. Since y ∈ W s

loc(x), dist(xni , yni) → 0 and hence
dist(τ(xni), τ(yni))→ 0 by uniform continuity of τ on S. Since ‖Hs

xniyni
− Id‖ → 0 and

τ is bounded on S we obtain

dist(τ(xni), H
s
xniyni

(τ(xni)))→ 0.

Here we used the fact that for any linear map X sufficiently close to the identity we have
dist (τ,X(τ))) ≤ k(τ) · ‖X − Id ‖, where k(τ) is bounded on bounded sets in Cd [KS10].
We conclude that dist (τ(y), Hs

xy(τ(x))) = 0 and thus τ is essentially Hs-invariant. �

Similarly, τ is essentially Hu-invariant. By Hölder continuity of holonomies (H4) this
implies essential Hölder continuity of τ along the stable and unstable leaves:

dist (τ(x), τ(y)) ≤ C dist(x, y)β if y ∈ W s/u
loc (x) and both x, y ∈ G.

To complete the proof of Theorem 6.3 we use the local product structure of µ and the
local product structure of the stable and unstable foliations to show that τ coincides
µ-a.e. with a Hölder continuous conformal structure on suppµ = X. �

6.3. Conformality and isometry from periodic data.
If a cocycle A over an Anosov diffeomorphism f is conformal or uniformly quasiconformal
then, clearly, there exists a constant Cper such that QA(p, n) ≤ Cper for every periodic
point p and n such that p = fnp. The next theorem shows that the converse is also true.
A similar result was also obtained in [LWi10] under an extra bunching-type assumption.

Theorem 6.5. [KS10] Let A : E → E be a Hölder continuous linear cocycle over a
hyperbolic system (X, f).

(i) If there exists a constant Cper such that QA(p, n) ≤ Cper whenever fnp = p, then
A is conformal with respect to a Hölder continuous Riemannian metric on E.

(ii) If A has bounded periodic data, that is, there exists a constant C ′per such that

max {‖An
p‖, ‖(An

p )−1‖} ≤ C ′per whenever fnp = p, then A is an isometry with
respect to a Hölder continuous Riemannian metric on E.

Remark 6.6. For a cocycle on a trivial bundle X × Rd given by A : X → GL(d,R)
the theorem implies Hölder cohomology to a cocycle with values in the conformal or
orthogonal subgroup. Indeed, let C(x) be the unique positive square root of the symmetric
positive definite matrix that defines the Riemannian metric at x. Then C is a desired
Hölder continuous conjugacy.

Proof of Theorem 6.5.
(i) The assumption and Proposition 5.12 yield fiber bunching of A. By Theorem 6.1

it suffices to show that A is uniformly quasiconformal on E . Let z ∈ X be a point with
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dense orbit O = {fkz : k ∈ Z}. We show that the quasiconformal distortion QA(z, k) is
uniformly bounded in k ∈ Z. Since QA(x, k) is continuous on X for each k, this implies
uniform quasiconformality.

Let δ0 be as in Anosov Closing Lemma, and let 0 < δ < δ0. We consider two points
of O with k1 < k2 and dist(fk1z, fk2z) < δ, and we denote x = fk1z and n = k2 − k1.
Then there exists p ∈ X with fnp = p such that dist(f ix, f ip) ≤ cδ for i = 0, . . . , n. Let
y ∈ W s

loc(p) ∩W u
loc(x). By Proposition 3.3 (H4),

‖(An
p )−1 ◦An

y − Id ‖ ≤ c′δβ and ‖(A−ny )−1 ◦A−nx − Id ‖ ≤ c′δβ.

It follows that if δ is sufficiently small, then

QA(y, n)/QA(p, n) ≤ (1 + c′δβ)/(1− c′δβ) ≤ 2 and QA(x, n)/QA(y, n) ≤ 2.

Thus QA(x, n) ≤ 4QA(p, n) ≤ 4Cper.

We take m > 0 such that the set {f jz; |j| ≤ m} is δ-dense in X, and set

Qm = max{QA(z, j) : |j| ≤ m}.
Then for any k > m there exists j, |j| ≤ m, such that dist(fkz, f jz) ≤ δ and hence

QA(z, k) ≤ QA(z, j) ·QA(f jz, k − j) ≤ Qm · 4Cper.
The case of k < −m is considered similarly. Thus QA(z, k) is uniformly bounded.

(ii) By (i), the cocycle is conformal with respect to a Hölder continuous Riemannian
metric g on E . Hence there exists a positive Hölder continuous function a(x) such that

‖Ax(v)‖g(fx) = a(x) · ‖v‖g(x) for each x ∈ X and each v ∈ Ex.
We seek a positive Hölder continuous function ϕ(x) such that the renormalized metric
g̃(x) = g(x)/ϕ(x) is invariant, that is

ϕ(fx) · ‖Ax(v)‖g̃(fx) = a(x)ϕ(x) · ‖v‖g̃(x), equivalently, a(x) = ϕ(fx)/ϕ(x).

Let p be a periodic point of a period n. The boundedness assumption for all periods
does not allow a(p)a(fp) · · · a(fn−1p) = ‖An

p‖g(p) to be greater or less than one. Hence

a(p)a(fp) · · · a(fn−1p) = 1 whenever p = fn, and by Livšic theorem the equation a(x) =
ϕ(fx)/ϕ(x) has a Hölder continuous solution. �

Part (ii) can also be obtained without using (i) as follows. First, similarly to (i) we
can show that boundedness of the periodic data implies boundedness of the cocycle,
that is, of the set {An

x : x ∈ X, n ∈ Z}. Then an analog of Proposition 6.2 can be
proven for inner products instead of conformal structures. This would give a bounded
measurable invariant family of inner products. Its Hölder continuity can be established
as in Theorem 6.3.

One may try to make weaker assumptions on the periodic data, for example that for
each p, there is a uniform bound C(p) on QA(p, n) for all periods n. This is equivalent
to each of the following three statements:

An
p is diagonalizable over C with its eigenvalues equal in modulus;
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An
p is conjugate to a conformal linear map;

There exists a An
p -invariant conformal structure on Ep.

In fact, the periodic assumption in the first part of Theorem 6.5 is equivalent to having
such conformal structures for all periodic points uniformly bounded. Without such
boundedness assumption, the theorem does not hold in dimension higher than two, as
the following example demonstrates.

Proposition 6.7. [KS10] Let (X, f) be a hyperbolic system and let E = X ×Rd, d ≥ 3.
For any ε > 0 there exists a Lipschitz continuous linear cocycle A : E → E, which its
generator ε-close to the identity, such that for all periodic points p ∈ X the return maps
An
p : Ep → Ep are conjugate to orthogonal maps, but A is not conformal with respect to

any continuous Riemannian metric on E.

Outline of the construction. Let E = X × R3 and Ax =

 cosα(x) − sinα(x) ε
sinα(x) cosα(x) 0

0 0 1

 .
Let S be a closed f -invariant set in X without periodic points and let α : X → R
be a Lipschitz continuous function satisfying

α(x) = 0 for x ∈ S and 0 < α(x) ≤ ε for x /∈ S

Then for x ∈ S, An
x =

 1 0 nε
0 1 0
0 0 1

 and so QA(x, n)→∞ as n→∞.

Thus A cannot be conformal with respect to a continuous Riemannian metric on E .

At p = fnp, the map An
p has eigenvalues of modulus 1 and is diagonalizable if the 2×2

rotation block has complex eigenvalues, that is the rotation angle α(p) + · · ·+α(fn−1p)
does not equal πk. This can be ensured for all periodic points by slightly modifying the
function α, if necessary. �

The next result shows that the weaker assumption of existence of invariant conformal
structures at periodic points suffices for two-dimensional bundles.

Theorem 6.8. [KS10] Let A : E → E be a Hölder continuous linear cocycle over a
hyperbolic system (X, f). Suppose that the fibers of E are two-dimensional.

(i) If for each periodic point p ∈ X, the return map An
p : Ep → Ep is diagonalizable

over C and its eigenvalues are equal in modulus, then A is conformal with respect
to a Hölder continuous Riemannian metric on E.

(ii) If for each periodic point p ∈ X, the return map An
p : Ep → Ep is diagonalizable

over C and its eigenvalues are of modulus 1, then A is isometric with respect to
a Hölder continuous Riemannian metric on E.

Outline of the proof. The proof relies on the fact that A as in the theorem is either
conformal or has a one-dimensional continuous invariant sub-bundle, see Corollary 7.5
in the next section. In the first case we immediately obtain (i).
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In the latter case, for any point p = fnp there is an invariant line for An
p : Ep → Ep.

This implies that the eigenvalues of An
p are real and by the assumption of the theorem,

they are either λ, λ or λ,−λ. If A is orientation preserving, the former is always the
case. It follows that An

p = λ · Id since it is diagonalizable. Hence QA(p, n) = 1 and
conformality of A follows from Theorem 6.5. If E is not orientable we can pass to a
double cover. If A is orientation reversing, we can consider cocycle A2 over f 2. Thus we
can always obtain an orientation preserving cocycle A′ which is conformal. This implies
uniform quasiconformality of the original cocycle A, and conformality of A follows from
Theorem 6.1.

The second part can be establishes as in the proof Theorem 6.5. Indeed, the assump-
tion implies that for any periodic point p the map An

p is conjugate to an orthogonal

matrix and hence there exists a constant C(p) such that max{‖An
p‖, ‖(An

p )−1‖} ≤ C(p)
for any period n of p. �

6.4. Infinite-dimensional setting. In [KS18-2] we obtained an analog of Theorem 6.5
for infinite-dimensional setting. The finite dimensional boundedness result was extended
in two directions: boundedness and pre-compactness, as the latter does not follow au-
tomatically. For a Banach cocycle A, we consider the periodic data set AP and the set
of all values AX ,

AP = {Ak
p : p = fkp, p ∈ X, k ∈ N} and AX = {An

x : x ∈ X, n ∈ Z}.

Theorem 6.9. [KS18-2] Let A be a Hölder continuous Banach cocycle over (X, f).

(i) If there exists a constant Cper such that QA(p, k) ≤ Cper whenever fkp = p,
then A is uniformly quasiconformal.

(ii) If the set AP is bounded in (GL(V ), d), then so is the set AX .

(iii) If the set AP has compact closure in (GL(V ), d), then so does the set AX ,
moreover, there exists a Hölder continuous family of norms ‖.‖x on V such
that Ax : (V, ‖.‖x)→ (V, ‖.‖fx) is an isometry for each x ∈ X.

We note that the closures in (iii) are not the same in general. For example, if A is a
coboundary, i.e., is generated by A(x) = C(fx)◦C(x)−1 for a function C : X → GL(V ),
then AP = {Id} while AX is usually not.

The proofs of uniform quasiconformality and boundedness of the cocycle are similar to
the proof of uniform quasiconformality in the first part of of Theorem 6.5. Part (iii) in the
infinite-dimensional case requires substantially different arguments. Indeed, Theorem
6.1 and Proposition 6.2 rely on the fact that the space of conformal structures and the
space of Euclidean norms have a structure of a symmetric space of nonpositive curvature,
but in infinite dimensional case there is no analogous metric structure. Instead, we
consider a natural distance on the set of norms but the resulting space is not separable so
we work with a small subset. The following general result yields a measurable invariant
family of norms and then we show its continuity.

Proposition 6.10. Let f be a homeomorphism of a metric space X and let A be a
continuous Banach cocycle over (X, f). If the set AX has compact closure in GL(V ),
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then there exists a bounded Borel measurable family of norms ‖.‖x on V such that Ax :
(V, ‖.‖x)→ (V, ‖.‖fx) is an isometry for each x ∈ X.

7. Cocycles with one Lyapunov exponent

Now we return to the finite-dimensional case and consider linear cocycles with one
Lyapunov exponent, that is, satisfying λ(A, µ) = χ(A, µ), where λ = λ` and χ = λ1 are
the largest and the smallest Lyapunov exponents given by the Oseledets Multiplicative
Ergodic Theorem. Clearly, this is a broader class than conformal or uniformly quasi-
conformal cocycles. We considered cocycles with one exponent in [KS09, KS10], and
the results in these papers indicated that such cocycles should exhibit some rigidity. In
[KS13] we showed that it is true in a strong sense by obtaining a continuous version of
Zimmer’s Amenable Reduction Theorem.

When A has more than one Lyapunov exponent, the invariant sub-bundles E i given
the Oseledets MET are measurable but not necessarily continuous. The next theorem
establishes continuity of measurable invariant sub-bundles for fiber bunched cocycles
with one exponent. It is a corollary of results by Avila and Viana in [AV10].

Theorem 7.1. Let (X, f) be a hyperbolic system, let A : E → E be a β-Hölder fiber
bunched linear cocycle over (X, f), and let µ be an ergodic f -invariant probability mea-
sure with full support and local product structure. If λ(A, µ) = χ(A, µ), then any µ-
measurable A-invariant sub-bundle of E is β-Hölder.

Now we obtain a structure theorem for cocycles with one exponent.

Theorem 7.2 (Continuous Amenable Reduction). [KS13] Let (X, f) be a hyperbolic
system and let A : E → E be a β-Hölder linear cocycle over f . Suppose that for
every periodic point p = fnp the invariant measure µp on its orbit satisfies λ(A, µp) =
χ(A, µp), that is, all eigenvalues of An

p are equal in modulus. Then there exist a flag of
β-Hölder A-invariant sub-bundles

(7.1) {0} = E0 ⊂ E1 ⊂ · · · ⊂ E j−1 ⊂ E j = E
and β-Hölder Riemannian metrics on the factor bundles E i/E i−1, i = 1, . . . , j, so that
the factor-cocycles induced by A on E i/E i−1 are conformal. Moreover, there exists a
positive β-Hölder function φ : X → R such that the factor-cocycles of φA on E i/E i−1
are isometries.

In the case when E1 = E , the cocycle A itself is conformal on E with respect to
some β-Hölder continuous Riemannian metric. If there are d = dim Ex continuous
vector fields which give bases for all E i, then the theorem implies that A is continuously
cohomologous to a cocycle with values in a “standard” maximal amenable subgroup
of GL(d,R). However, triviality of E alone is insufficient for such reduction even if
E = T2 × R2 since invariant sub-bundles may be non-orientable [S13].

Outline of the proof of Theorem 7.2. The periodic assumptions imply that the cocycle
is fiber bunched by Corollary 5.10(ii) and has one exponent for each ergodic measure by
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Theorem 5.2. We take µ to be the measure of maximal entropy, or the invariant volume
if it exists, and trivialize the bundle E on a set of full measure, that is, we measurably
identify E with X × Rd and view A as a GL(d,R)-valued cocycle. Thus we can use
Zimmer’s Amenable Reduction [BaPe, Theorem 3.5.9].

Theorem 7.3 (Zimmer’s Amenable Reduction). Let f be an ergodic transformation of
a measure space (X,µ) and let A : X → GL(d,R) be a measurable function.

Then there exists a measurable function C : X → GL(d,R) such that the function
B(x) = C−1(fx)A(x)C(x) takes values in an amenable subgroup G of GL(d,R).

There are 2d−1 standard maximal amenable subgroups of GL(d,R) [Mo79]. They
correspond to the distinct compositions of d, d1 + · · ·+ dk = d, and each group consists
of all block-triangular matrices of the form

B1 ∗ . . . ∗

0 B2
. . .

...
...

. . .
. . . ∗

0 . . . 0 Bk


where each diagonal block Bi is a di × di conformal matrix, i.e., a scalar multiple of
an orthogonal matrix. Any amenable subgroup of GL(d,R) has a finite index subgroup
which is contained in a conjugate of one of these standard subgroups. Thus we may
assume that G has a finite index subgroup G0 which is contained in one of the standard
subgroups.

We concentrate on the simplest case when G0 = G. Then the sub-bundle V i spanned
by the first d1+· · ·+di coordinate vectors in Rd is B-invariant for i = 1, . . . , k. Denoting
E ix = C(x)V i we obtain the corresponding flag of measurable A-invariant sub-bundles

E1 ⊂ E2 ⊂ · · · ⊂ Ek = E with dim E i = d1 + · · ·+ di.

By Theorem 7.1 we may assume that the sub-bundles E i are Hölder continuous.
Since B1(x) is a conformal matrix for µ-a.e. x, the push forward by C of the standard
conformal structure on V 1 is invariant under the restriction of A to E1 and hence β-
Hölder continuous by Theorem 6.3.

Similarly, we consider the factor-bundles E i/E i−1 over X with the natural induced
cocycle A(i). Since the matrix of the map induced by B on V i/V i−1 = Rdi is Bi, it
preserves the standard conformal structure on Rdi . Pushing it forward by C we obtain
a measurable conformal structure τi on E i/E i−1 invariant under A(i). The holonomies
HA,s and HA,u induce holonomies for A(i) on E i/E i−1. By Lemma 6.4, we conclude that
τi is essentially invariant under these holonomies and hence is also β-Hölder continuous
on X.

Now we outline the argument for the case when G0 6= G. An example illustrating this
case is when G0 is the full diagonal subgroup and G is its normalizer, which is the finite
extension of G0 that contains all permutations of the coordinate axes.
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In the general case, G0 still has the invariant flag V 1 ⊂ V 2 ⊂ · · · ⊂ V k = Rd with
conformal structures on the factors. The elements of G may not preserve this flag,
instead there may be several images of it under G:

V 1
(1) ⊂ V 2

(1) ⊂ · · · ⊂ V k
(1)

. . .

V 1
(`) ⊂ V 2

(`) ⊂ · · · ⊂ V k
(`).

These flags are mapped by C to the corresponding measurable flags on E as before. The
sub-bundles in the flags are not A-invariant individually, but A preserves the union of
subspaces at each level of the flag C(V i

(1))∪ · · · ∪C(V i
(`)), i = 1, . . . , k− 1. For each level

of the flag we show that the union is essentially holonomy invariant and hence Hölder
continuous. The union may not split into individual invariant sub-bundles since it may
“twist” along non-trivial loops in X. Thus to obtain actual continuous sub-bundles one
may need to pass to a special finite cover of X. These sub-bundles are not necessarily
invariant as A may permute them, but they are invariant under an iterate of A. In this
way we can obtain the general result Theorem 7.4 below.

Theorem 7.4. [KS13] Let (X, f) be a hyperbolic system, let µ be an ergodic f -invariant
probability measure with full support and local product structure, and let A : E → E
be a β-Hölder continuous linear cocycle over f . Suppose that A is fiber bunched and
λ(A, µ) = χ(A, µ). Then there exists a finite cover Ã : Ẽ → Ẽ of A and N ∈ N
such that ÃN satisfies the following property. There exist a flag of β-Hölder continuous
ÃN -invariant sub-bundles

{0} = Ẽ0 ⊂ Ẽ1 ⊂ · · · ⊂ Ẽk−1 ⊂ Ẽk = Ẽ

and β-Hölder continuous conformal structures on the factor bundles Ẽ i/Ẽ i−1, i =

1, . . . , k, invariant under the factor-cocycles induced by ÃN .

To complete the proof of Theorem 7.2, we claim that the assumption on the periodic
data implies that A is conformal on the sub-bundle spanned by the union C(V 1

(1))∪· · ·∪
C(V 1

(`)), and then similarly for the induced cocycles on the factors. Indeed, the scalar

cocycles that give expansion/contraction of A, more precisely, of an iterate of the lift of
A as above, are all continuously cohomologous by Livšic theorem, since the exponents
at each periodic point are the same. This yields uniform quasiconformality and hence
conformality of A on the span. The same reasoning shows that the scalar cocycles of
expansion/contraction for the different conformal factors of A are all cohomologous to
one scalar function, whose inverse gives the function φ in the theorem. �

We note that the assumption of Theorems 7.2 implies that A has one exponent with
respect to any measure, while in Theorem 7.4 the cocycle has one exponent with respect
to just one measure µ.

Now we apply the theorems to cocycles on bundles with two-dimensional fibers. Then
Theorem 7.2 yields the following.
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Corollary 7.5. Let A and (X, f) be as in Theorem 7.2, and suppose that the fibers of E
are two-dimensional. Then either A is conformal with respect to a β-Hölder Riemannian
metric on E or A has a one-dimensional Hölder continuous invariant sub-bundle.

The proof of Theorem 7.4 can be used to obtain the following two-dimensional result.

Corollary 7.6. [GKS20] Let A and (X, f) be as in Theorem 7.4, and suppose that the
fibers of E are two-dimensional. Then at least one of the following holds:

(1) A is conformal with respect to a Hölder continuous Riemannian metric on E;
(2) A preserves a Hölder continuous one dimensional sub-bundle;
(3) A preserves a Hölder continuous field of two transverse lines.

We note that in the previous corollary every measure has one exponent, which in case
(3) would yield conformality.

Using Theorem 7.1 we also obtain the following estimates.

Corollary 7.7 (Polynomial growth of the quasiconformal distortion and norm).
Let A : E → E be a Hölder continuous linear cocycle over a hyperbolic system (X, f).
Suppose that for every f -periodic point p the invariant measure µp on its orbit satisfies
λ(A, µp) = χ(A, µp). Then there exists m < dim Ex and C such that

QA(x, n) ≤ Cn2m for all x ∈ X and n ∈ Z.

Moreover, if λ(A, µp) = χ(A, µp) = 0 for every µp, then there exists m < dim Ex and C
such that

‖An
x‖ ≤ C|n|m for all x ∈ X and n ∈ Z.

One can take m = j − 1, which is the number of non-trivial sub-bundles in (7.1).

7.1. Classification of GL(2,R)-valued cocycles with one exponent. The structure
Theorems 7.2 and 7.4 and Corollary 7.5 can be used to study cohomology of cocycles.
First such results were obtained in the two dimensional case before the theorems in
higher dimensions were established. In [KS10] we proved criteria for conformality and
isometry, and hence cohomology to a conformal or orthogonal cocycle, see Theorem 6.8.
Then a complete classification up to Hölder cohomology of GL(2,R)-valued cocycles
with one exponent at each periodic point was obtained in [S13]. It showed that such
cocycles can be viewed as either elliptic or parabolic.

Theorem 7.8. [S13] Let f : X → X is a transitive Anosov diffeomorphism, and let A
be an orientation-preserving GL(2,R)-valued cocycle over (X, f). Suppose that for each
periodic point p = fnp in X, the eigenvalues of the matrix An

p are equal in modulus.
Then A belongs to exactly one of the five types below.

I. If A preserves exactly one Hölder continuous sub-bundle, which is orientable,
then A is Hölder cohomologous to a cocycle A′ with the generator

A′(x) = k(x)

[
1 α(x)
0 1

]
, where k(x) 6= 0 and α is not cohomologous to 0.
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I′. If A preserves exactly one Hölder continuous sub-bundle, which is not orientable,
then there exists a cocycle A′ as in I such that the lifts of A and A′ to a double
cover are Hölder cohomologous.

II. If A preserves more than one orientable Hölder continuous sub-bundle, then A

is Hölder cohomologous to A′ with A′(x) = k(x) · Id, where k(x) 6= 0.

II′. If A preserves more than one non-orientable Hölder continuous sub-bundle, then
there exists a cocycle A′ as in II such that the lifts of A and A′ to a double cover
are Hölder cohomologous.

III. If A has no invariant Hölder continuous sub-bundles, then A is Hölder cohomol-
ogous to A′ with A′(x) = k(x)R(α(x)), where k(x) > 0, R(α(x)) is the rotation
by α(x), and α : X → R/2πZ is such that α is not cohomologous to 0 in R/πZ.

Examples of cocycles as in I′ and I′′ were also constructed in [S13]. We note that for
cocycles as in the theorem, any measurable invariant sub-bundle is Hölder continuous,
thus measurable sub-bundles can be considered in the statement.

Explicit necessary and sufficient conditions for cohomology of “model” cocycles within
each class were also obtained in [S13], cf. Proposition 4.7. In particular these results
yielded the following.

Corollary 7.9. [S13] Let µ be an f -invariant ergodic measure with full support and local
product structure, and let A and B be two cocycles as in Theorem 7.8. Then any µ-
measurable conjugacy between A and B is Hölder continuous. In particular, the Hölder
classification in the theorem coincides with the measurable one.

We note that cocycles of types I and I′ are not uniformly quasiconformal and hence
Theorem 4.14 on continuity of measurable conjugacy does not apply to them.

8. Cocycles over partially hyperbolic diffeomorphisms

Many of the ideas and techniques that were used for hyperbolic systems extend to
partially hyperbolic setting.

A diffeomorphism f of X is called partially hyperbolic if there exist a nontrivial Df -
invariant splitting of the tangent bundle TX = Es ⊕Ec ⊕Eu, a Riemannian metric on
X, and continuous functions ν < 1 < ν̂, γ, γ̂ such that for any x ∈ X and any unit
vectors vs/c/u in Es/c/u(x),

(8.1) ‖Df(vs)‖ < ν(x) < γ(x) < ‖Df(vc)‖ < γ̂(x) < ν̂(x) < ‖Df(vu)‖.

The sub-bundles Es, Eu, and Ec are called stable, unstable, and center, and Es and Eu

are tangent to the foliationsW s andW u. A partially hyperbolic diffeomorphism is called
accessible if any two points in X can be connected by an su-path, i.e., a concatenation
of finitely many subpaths lying in a single leaf of W s or W u, and f is called center
bunched if ν < γγ̂−1 and ν̂−1 < γγ̂−1.
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Assumptions. In this section, f is an accessible center bunched partially hyperbolic
C2 diffeomorphism preserving a volume µ, and A : E → E is a β-Hölder linear cocycle
over (X, f). The volume µ is ergodic for such f by [BuW10].

Problems of continuity for invariant objects and measurable conjugacies are natural
in this setting. The following theorem extends the corresponding results for hyperbolic
systems.

Theorem 8.1. [KS13, ASV13] Let f , µ and A be as in the Assumptions.

(i) If A is fiber bunched, then any A-invariant µ-measurable conformal structure on
E is continuous, that is, coincides µ-a.e. with a continuous one.

(ii) If A is uniformly quasiconformal then it preserves a continuous conformal struc-
ture on E, equivalently, A is conformal with respect to a continuous Riemannian
metric on E.

(iii) If A is fiber bunched and has one Lyapunov exponent with respect to µ, then any
µ-measurable A-invariant sub-bundle of E is continuous.

Note that only continuity of measurable objects is obtained in the partially hyperbolic
case. Hölder continuity can be proved under a stronger accessibility assumption.

Outline of the proof. Fibers bunching for cocycles over partially hyperbolic systems is
defined in the same way as for hyperbolic ones, see Definition 3.2. It implies existence
of stable and unstable holonomies for A as in Proposition 3.3. Lemma 6.4 also extends
directly and yields essential invariance of a measurable conformal structure τ under the
stable and unstable holonomies of A. In the proof of Theorem 8.1, the local product
structure of stable and unstable manifolds is replaced by accessibility. In this case the
global continuity of τ on X follows from [ASV13, Theorem E] or [W13, Theorem 4.2].
Part (ii) follows from part (i) and Proposition 6.2. Essential invariance of the sub-bundle
in part (iii) is obtained using results in [AV10, ASV13]. �

Using Theorem 8.1 we extended Theorem 7.4 on structure of cocycles with one expo-
nent to partially hyperbolic setting [KS13].

Theorem 8.2. [KS13] Let f , µ and A be as in the Assumptions. Suppose that A is
fiber bunched and λ(A, µ) = χ(A, µ) for the invariant volume µ.

Then there exists a finite cover Ã : Ẽ → Ẽ of A and N ∈ N such that ÃN satisfies the
following property. There exist a flag of continuous ÃN -invariant sub-bundles

(8.2) {0} = Ẽ0 ⊂ Ẽ1 ⊂ · · · ⊂ Ẽk−1 ⊂ Ẽk = Ẽ

and continuous conformal structures on the factor bundles Ẽ i/Ẽ i−1, i = 1, . . . , k, in-

variant under the factor-cocycles induced by ÃN .

Now we consider cohomology of linear cocycles over partially hyperbolic systems.
Continuity of a measurable conjugacy for real-valued cocycles was obtained by Wilkinson
in [W13]. The next theorem extends this result to linear cocycles.
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Theorem 8.3. [KS16] Let f and µ be as in the Assumptions, and let A and B be
Hölder continuous linear cocycles over (X, f). If A is fiber bunched and B is uniformly
quasiconformal, then any µ-measurable conjugacy C between A and B coincides on a
set of full volume with a continuous conjugacy.

The proof uses the techniques of the hyperbolic setting as in the proof of Theorem 4.14
to obtain essential Hölder continuity along stable and unstable foliations and then con-
cludes global continuity using results from [ASV13, W13]. Global Hölder continuity for
scalar cocycles was obtained in [W13]. For linear cocycles this is only known under a
stronger accessibility assumption [KS16].

Partially hyperbolic systems may have no periodic points. In analogs of Questions
4.4 and 4.5 for these systems, the role of periodic data is played by cycle weights (or
functionals). A cycle weight is a composition of holonomies of a cocycle along a closed
su-path. More precisely, let HA,s and HA,u be the stable and unstable holonomies for
a cocycle A. Let P = Px0 = {x0, x1, . . . , xk−1, xk = x0} be an su-cycle, that is a closed
su-path in X. The cycle weight of P is

HA,P
x0

= Hxk−1,x0 ◦ · · · ◦Hx1,x2 ◦Hx0,x1 ,

where Hxi,xi+1
= H

s/u
xi,xi+1 if xi+1 ∈ W s/u(xi).

In case of real-valued cocycles, HA,P
x0

is also called a cycle functional. This notion was
introduced in [KtKo96] to show that for systems with strong accessibility, a real-valued
cocycle has zero cycle weights if and only if it is cohomologous to a constant cocycle. This
was extended in some cases to non-commutative cocycles [KtNT00] but, as we showed in
[KS16], having trivial cycle weights is not necessary in general for continuous cohomology
to a constant cocycle. In [KS16] we obtained necessary and sufficient conditions for
cohomology of a cocycle to a constant one, as well as the following result for cohomology
of two arbitrary cocycles in terms of cycle weights.

Theorem 8.4. Let f be an accessible center bunched partially hyperbolic diffeomor-
phism. Let A and B be β-Hölder linear or Banach cocycles over (X, f) with holonomies
HA and HB. Suppose that there exist a fixed point x0 and Cx0 ∈ GL(V ) such that

Ax0 = Cx0 ◦Bx0 ◦ C−1x0 and HA,P
x0

= Cx0 ◦ HB,P
x0
◦ C−1x0 for every su-cycle Px0.

Then there exists a continuous conjugacy C between A and B with C(x0) = Cx0.

For the case when x0 is not fixed, we established similar conditions that guarantee
existence of a a continuous conjugacy C with C(x0) = Cx0 .

9. Applications to rigidity problems for hyperbolic systems

9.1. Local rigidity. It is well-known that if g is an Anosov diffeomorphism and f is
sufficiently C1 close to g, then f is also Anosov and f is topologically conjugate to g,
that is, there is a homeomorphism h of X such that g = h−1 ◦f ◦h. In general, h is only
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Hölder continuous. A necessary condition for it to be C1 is that the derivatives of the
return maps of f and g at the corresponding periodic points are conjugate, specifically,

Dpg
n = (Dph)−1 ◦Dh(p)f

n ◦Dph whenever p = fnp.

An Anosov diffeomorphism g is said to be locally rigid if for any C1-small perturbation f
this condition is also sufficient for the conjugacy to be a C1 diffeomorphism. The problem
of local rigidity has been extensively studied and Anosov diffeomorphisms with one-
dimensional stable and unstable sub-bundles were shown to be locally rigid [L87, LM88,
L92]. In higher dimensions, examples where the periodic condition is not sufficient were
constructed by de la Llave [L92, L02]. We recall that L is irreducible if it has no rational
invariant subspaces, equivalently, if its characteristic polynomial is irreducible over Q.
Examples in [G08] showed that irreducibility of L is a necessary condition for local
rigidity, except when L is conformal on the stable and unstable sub-bundles. In the
latter case local rigidity was obtained for some systems in [L02] and for broader classes
[KS03, KS09] as a corollary of global rigidity results, see Theorem 9.7 and Remark 9.8.

Local rigidity was proved in [G08] for an irreducible Anosov toral automorphism
L : Td → Td with real eigenvalues of distinct moduli, as well as for some nonlinear
systems with similar structure. In [GKS11, S15] we used results on conformality and
cohomology of linear cocycles to establish the following local rigidity results.

Theorem 9.1. [S15, GKS11] Let L : Td → Td be an irreducible Anosov automorphism
and let f be a C1-small perturbation of L such that for each periodic point p = fnp there
is a matrix C(p) such that Dpf

n = C(p) ◦ Ln ◦ C(p)−1. Suppose that either

(i) No three of the eigenvalues of L have the same modulus [GKS11], or

(ii) C(p) is Hölder continuous at a periodic point p0, that is,
d(C(p), C(p0)) ≤ c dist(p, p0)

β for every periodic point p [S15].

Then f is C1+Hölder conjugate to L.

We note that f in this theorem has an invariant volume. Indeed, the conjugacy
assumption implies detDpf

n = detLn = 1 whenever p = fnp and existence of density
which gives an invariant volume follows from Livšic Theorem 4.1(i).

Outline of the proof of Theorem 9.1. The proofs of (i) and (ii) differ only in the way
we obtain conformality of Df on certain invariant sub-bundles. Conformality of these
restrictions plays an important role in establishing smoothness of the conjugacy.

We denote by Eu,L the unstable sub-bundle of L. Let 1 < ρ1 < · · · < ρ` be the
distinct moduli of the unstable eigenvalues of L, and let Eu,L = EL

1 ⊕ · · · ⊕ EL
` be

the corresponding splitting of the unstable sub-bundle. Since f is C1 close to L, f is
also Anosov, and its unstable sub-bundle Eu,f splits into a direct sum of ` invariant
Hölder continuous sub-bundles close to the corresponding sub-bundles for L: Eu,f =
Ef

1 ⊕ · · · ⊕ E
f
` . Let Ai = L|EL

i and Bi = Df |Ef
i .

Since L is irreducible, all its eigenvalues are simple and thus L and its the restrictions
Ai are diagonalizable over C. Since the eigenvalues of Ai are of the same modulus, Ai is
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conformal in some norm. Since C(p) maps EL
i (p) to Ef

i (p), the cocycle Bi has conjugate
periodic data, and hence is conformal at the periodic points.

In [GKS11], conformality of Bi at the periodic points together with the assumption

that the sub-bundles EL
i and Ef

i are either one- or two-dimensional allows us to conclude
that, by Theorem 6.8, the cocycle Bi is conformal. In higher dimensions, conformality
at the periodic points does not imply conformality. In (ii) we can use Corollary 4.12 to
conclude that Ai and Bi are Hölder continuously cohomologous, and so in particular Bi

is also conformal.
After conformality of Df on each sub-bundle Ef

i is obtained, we consider the topo-

logical conjugacy h close to the identity between L and f . If h maps foliation W f
i

tangent to Ef
i to the corresponding linear foliation WL

i , the conformality allows us to

obtain that h is Lipschitz along the leaves of W f
i . This also uses the fact that Ai and

Bi, or at least their norms, are continuously cohomologous. Then we can differentiate
the conjugacy equation h ◦ f = L ◦ h almost everywhere with respect to volume. The
derivative D(h|W f

i ) is then a measurable conjugacy between Ai and Bi and hence is

Hölder by Theorem 4.14. This implies that h is C1+Hölder along W f
i , and having this

for each foliation W f
i yields that h is C1+Hölder along W u,f . Then regularity of h along

W s,f is obtained similarly and regularity on Td follows.
Establishing that h(W f

i ) = WL
i for each i is done using an inductive process within

stable and unstable foliations. The base is given by the slowest foliation W1. The
inductive step also uses Hölder conjugacy between Ai and Bi established at the previous
steps, as well as their conformality, to obtain conformality of the holonomies of certain
foliations between the leaves of W f

i . �

Since L is linear, its Lyapunov exponents are the same for all invariant measures.
The conjugacy of periodic data of f and L implies that Lyapunov exponents of f with
respect to any f -invariant measure µ equal to the Lyapunov exponents of L by Theorem
5.2 on their periodic approximation.

Saghin and Yang obtained smoothness of the conjugacy h for a volume preserving
perturbation f of an irreducible L if f and L have the same Lyapunov exponents with
respect to the volume and all Lyapunov exponents are simple [SaY19]. The following
theorem allows for double Lyapunov exponents and extends the Saghin-Yang result to
a much broader class of irreducible hyperbolic automorphisms. We note, however, that
these results rely on the fact that volume is the measure of maximal entropy for L, and
they do not hold in general when L is replaced by a non-linear system.

Theorem 9.2. [GKS20] Let L : Td → Td be an Anosov automorphism such that no
three of its eigenvalues have the same modulus and L4 is irreducible. Let f be a volume-
preserving C2 diffeomorphism of Td sufficiently C1-close to L. If the Lyapunov exponents
of f with respect to the volume are the same as the Lyapunov exponents of L, then f is
C1+Hölder conjugate to L.

In fact, it suffices to assume that L is irreducible and have no pairs of eigenvalues
of the form λ,−λ or iλ,−iλ, where λ is real, which follows if L4 is irreducible. This
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assumption implies that L has no invariant lines or pairs of lines. The same property
holds for the derivative at a fixed point for any small perturbation f . This implies
that for the cocycle Bi = D(h|W f

i ), as in the proof of Theorem 9.1, options (2) and
(3) in Corollary 7.6 are impossible and hence Bi is conformal. The other significant
difference from the proof of Theorem 9.1 is that cohomology of the norms of Ai and Bi

is obtained using the Jacobian of the conjugacy h restricted to W f
i . The latter relies on

establishing that h maps the conditional measures of the volume for f on W f
i to those

for L. Otherwise, the structure of the proof is similar.

9.2. Smoothness of the stable/unstable sub-bundles and global rigidity.
The results on conformality of linear cocycles in Section 6 were motivated in part by
the study of rigidity for conformal Anosov systems. The initial results were established
in [S02] for the restrictions of Df to the stable and unstable sub-bundles. They allowed
to obtain regularity of the foliations and global rigidity, that is existence of a conjugacy
to an algebraic model, for some classes of Anosov systems.

Theorem 9.3. [S02] Let f be a transitive C∞ Anosov diffeomorphism of X. Suppose
that Df is uniformly quasiconformal on Es with dimEs ≥ 2. Then

(i) Df is conformal with respect to a Riemannian metric on Es which is Hölder
continuous on X and C∞ along the leaves of the stable foliation.

(ii) The holonomy maps of the unstable foliation are conformal and Eu is C∞.

A similar result holds for a topologically mixing C∞ Anosov flow that is uniformly
quasiconformal on the strong stable sub-bundle Es. It yields conformality on Es, con-
formality of the holonomies of the weak stable foliation, and C∞ regularity of the weak
stable sub-bundle [S02]. The proof is also similar.

Outline of the proof of Theorem 9.3.
(i) Since Df is uniformly quasiconformal on Es, it preserves a Hölder continuous

conformal structure τ on Es. We show its smoothness along the leaves using a non-
stationary linearization. Taking a smooth normalization of τ , we obtain a desired Rie-
mannian metric on Es.

The statement below is a generalization of a one-dimensional result established by
Katok and Lewis in [KtL91].

Proposition 9.4 (Non-stationary linearization). [S02] Let f be a diffeomorphism of a
compact Riemannian manifold X, and let W be a continuous invariant foliation with
C∞ leaves. Suppose that ‖Df |TW‖ < 1, and there exist C > 0 and 0 < θ < 1 such that

‖ (Dfn|TxW )−1 ‖ · ‖Dfn|TxW ‖2 ≤ Cθn for all x ∈ X and n ∈ N.

Then for every x ∈ X there exists a C∞ diffeomorphism hx : W (x) → TxW such that
hfx ◦ f = Dfx ◦ hx, hx(x) = 0, Dxhx = Id, and hx depends continuously on x in C∞

topology.

Applying the proposition to f yields a non-stationary linearization {hx} along W s.
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For each x ∈ X we extend the conformal structure τ(x) to a constant conformal
structure σ on TEs

x, that is, for each t ∈ Es
x we denote by σ(t) the push forward of τ(x)

by the translation from 0 to t.

Lemma 9.5. Each hx : W s(x) → Es
x is conformal with respect to τ and σ, that is,

hx(τ(y)) = σ(hx(y)) for any y ∈ W s(x), and hence τ is C∞ along the leaves of W s.

Proof. By continuity of τ and the properties of hx, for each ε > 0 there exists n > 0
such that

dist(hfnx(τ(fny)), σ(hfnx(f
n(y))) < ε.

To obtain the following equalities, we note that Dfn induces an isometry between
the spaces of conformal structures, τ is f -invariant, σ is Df -invariant, and hx(y) =
Df−n(hfnx(f

ny)). Thus,

ε > dist (hfnx(τ(fny)), σ(hfnx(f
ny) )

= dist (Df−n(hfnx(τ(fny))), Df−n(σ(hfnx(f
ny)) )

= dist (Df−n(hfnx(f
n(τ(y))), σ(Df−n(hfnx(f

ny)) )

= dist (hx(τ(y)), σ(hx(y)) ).

It follows that hx(τ(y)) = σ(hx(y)). Since h is a C∞ diffeomorphism and σ is constant,
τ is C∞ along the leaves of W s. �

(ii) Let x and y be two nearby points in X. We consider the holonomy map of the
unstable foliation Hx,y : W s

loc(x)→ W s
loc(y):

z ∈ W s
loc(x) 7→ Hx,y(z) = W s

loc(y) ∩W u
loc(z).

First we show that the holonomy maps Hx,y are conformal, i.e. Hx,y(τ(z)) = τ(Hx,y(z)).
By the Cr-section Theorem [HPuSh], conformality of Df on Es implies that the unstable
sub-bundle is C1, and hence the holonomy maps are uniformly C1 [PSW97]. It suffices
to consider the case when z = x and y ∈ W u(x) so that y = Hx,y(z). We iterate by
f−1 and note that Hx,y = fn ◦ Hf−nx,f−ny ◦ f−n and that Df−nxHf−nx,f−ny is close to
identity for large n since f−ny is close to f−nx. Since τ is continuous, τ(f−nx) is close to
τ(f−ny). Thus, Hf−nx,f−ny(τ(f−nx)) is close to τ(f−ny). Since Dfn induces an isometry
between the spaces of conformal structures on Es(f−ny) and on Es(y), we conclude that
Hx,y(τ(x)) is close to τ(y). By letting n→∞, we obtain Hx,y(τ(z)) = τ(Hx,y(z)).

Now we show that Hx,y are C∞. Using the non-stationary linearization coordinates
we view it as the map

Gx,y = hy ◦ Hx,y ◦ h−1x : Es
x → Es

y,

Then Gx,y is a conformal C1 diffeomorphism of Rd defined on a neighborhood of 0, and
hence it is C∞. Indeed, if d > 2, it is Möbius, and if d = 2 it is complex analytic.
Therefore Hx,y is C∞ and it follows that Eu is C∞ [PSW97]. �

We say that an Anosov diffeomorphism is uniformly quasiconformal if it is uniformly
quasiconformal on both Eu and Es. Theorem 9.3 implies that for such diffeomorphisms
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both Eu and Es are C∞. In general, smoothness of both Eu and Es is not known
to imply smooth conjugacy to algebraic model, although it is conjectured. However,
the implication is known to hold under additional assumptions, for example that f is
symplectic [BFL92] or that f preserves a smooth affine connection [BL93]. Thus we
obtain the following result for a symplectic diffeomorphism f . For such f , conformality
on the stable sub-bundle implies conformality on the unstable one, and vice versa.

Theorem 9.6. [S02] Let f be a C∞ symplectic Anosov diffeomorphism of a compact
manifold X, dimX ≥ 4. Suppose that f is uniformly quasiconformal on the unstable
sub-bundle. Then a lift of f to a finite cover of X is C∞ conjugate to an Anosov
automorphism of a torus.

Without symplecticity, we obtained the following general result in [KS03].

Theorem 9.7 (Global rigidity of uniformly quasiconformal Anosov diffeomorphisms).
[KS03] Let f be a transitive C∞ Anosov diffeomorphism of a compact manifold X which
is uniformly quasiconformal on the stable and unstable sub-bundles. Suppose either that
both sub-bundles have dimension at least three, or that they have dimension at least two
and X is an infranilmanifold. Then a lift of f to a finite cover of X is C∞ conjugate
to an Anosov automorphism of a torus.

Outline of the proof. Theorem 9.3 implies that both Eu and Es are C∞ and there is a
C∞ Riemannian metric on X for which f is conformal on both Eu and Es. Under the
assumptions of the theorem, we showed that the holonomy maps Hx,y are globally de-
fined affine conformal maps between the leaves. Then we proved that the non-stationary
linearization coordinates hsx and hux depend C∞ on x. This allowed us to construct a
smooth invariant affine connection. Existence of such a connection together with the
smoothness of Eu and Es implies the conjugacy by the result in [BL93]. �

Remark 9.8. Uniform quasiconformality or conformality of f can be established from
its periodic data. Results of this type were obtained in [KS03, KS09], and later extended
to general cocycles in Theorems 6.5 and 6.8.

9.3. Global rigidity of Anosov flows. Continuous time conformal Anosov systems
were studied by Kanai in the special case of geodesic flows. He proved in [Kn93] that
the geodesic flow of a compact Riemannian manifold of negative curvature of dimension
at least three is C2 conjugate to the geodesic flow of a manifold of constant negative
curvature under the assumption that either the flow preserves a continuous conformal
structure on the strong stable sub-bundle, or the flow satisfies 1/2 pinching and preserves
a bounded measurable conformal structure on the strong stable sub-bundle. The next
theorem generalizes this result to the case of contact flows.

Theorem 9.9. [S02] Let ϕt be a C∞ contact Anosov flow on a compact manifold M,
dimM ≥ 5. If the flow is uniformly quasiconformal on the strong stable sub-bundle,
then it is essentially, that is up to a time change of a specific form, C∞ conjugate to the
geodesic flow of a manifold of constant negative curvature.
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This theorem follows from the analog of Theorem 9.3 for flows and the result of
Benoist, Foulon, and Labourie on rigidity of contact Anosov flows with smooth stable
and unstable sub-bundles in [BFL92]. In a particular case when ϕt is a geodesic flow of
a compact Riemannian manifold N of negative curvature of dimension at least three,
the theorem yields that ϕt is conjugate to the geodesic flow of a manifold of constant
negative curvature. Then it follows from the main theorem of Besson, Courtois, and
Gallot in [BCG95] that N is a manifold of constant negative curvature.

We showed in [S02] that any smooth time change of a uniformly quasiconformal
Anosov flow is also uniformly quasiconformal. Therefore, if the flow is not assumed
contact then it could be any smooth time change of the geodesic flow of a hyperbolic
manifold or of the suspension flow of a conformal hyperbolic automorphism of a torus.
Rigidity of uniformly quasiconformal Anosov diffeomorphisms and flows was further
studied by Fang in [Fa04, Fa07]. In particular, the following classification was obtained
in higher dimensions.

Theorem 9.10. [Fa07] Let ϕt be a C∞topologically transitive uniformly quasiconformal
Anosov flow such that the strong stable and unstable sub-bundles Eu and Es are at
least three dimensional. Then up to finite covers, ϕt is C∞ conjugate to a time change
of either the geodesic flow of a hyperbolic manifold or the suspension of a hyperbolic
automorphism of a torus.

In the context of geodesic flows, stronger results on rigidity of Lyapunov spectrum
were recently obtained by Butler [Bt17]. They rely on techniques from [S02] and analogs
of structure results for cocycles with one Lyapunov exponent, Theorems 7.2 and 7.4.
We note that 1/4-pinching of the sectional curvature for geodesic flows ensures fiber
bunching of stable and unstable differential for the geodesic flow.

Theorem 9.11. [Bt17] Let M be a closed negatively curved Riemannian manifold with
dimM≥ 3.

(i) If at each periodic orbit the geodesic flow ϕt has one unstable Lyapunov exponent,
then M has constant curvature.

(ii) Suppose that M has relatively 1/4-pinched sectional curvatures. Let µ be an
ergodic measure with full support and local product structure invariant under the
geodesic flow ϕt. If µ has one unstable Lyapunov exponent then M has constant
curvature.

Further results on Lyapunov spectrum rigidity for geodesic flows on negatively curved
symmetric spaces were obtained in [Bt19].
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