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Abstract. We consider Hölder continuous cocycles over hyperbolic dynamical sys-
tems with values in the group of invertible bounded linear operators on a Banach
space. We show that two fiber bunched cocycles are Hölder continuously cohomol-
ogous if and only if they have Hölder conjugate periodic data. The fiber bunching
condition means that non-conformality of the cocycle is dominated by the expansion
and contraction in the base system. We show that this condition can be established
based on the periodic data of a cocycle. We also establish Hölder continuity of a
measurable conjugacy between a fiber bunched cocycle and one with values in a set
which is compact in strong operator topology.

1. Introduction and statements of the results

Cocycles play an important role in dynamics. Cohomology of real-valued and, more
generally, group-valued cocycles over hyperbolic systems has been extensively studied
starting with the seminal work of A. Livšic [Liv71], see [KtN] for an overview. The
study has been focused on obtaining cohomology of two cocycles from their periodic
data, i.e. the values at the periodic points of the base system, and on regularity
of transfer map, or conjugacy, between two cocycles. Livšic resolved the case of
cocycles with values in R or an abelian group and made some progress for more
general groups. For smooth dynamical systems, the differential and its restrictions
to invariant sub-bundles give important examples of cocycles. This motivated in
part the extensive research of GL(n,R) and Lie group valued cocycles. Cohomology
problems for cocycles with values in non-abelian groups are much more difficult. The
case when one of the cocycles is the identity has been studied most and by now is
relatively well understood, see for example [Liv72, NT95, PWa01, LW10, K11, GG].
The cohomology problem for two arbitrary cocycles does not reduce to this special
case for non-abelian groups. This problem was first considered in [Pa99] for compact
groups and in [Sch99] for cocycles with “bounded distortion”. The most general
results for GL(n,R) were established in [S15] for fiber bunched cocycles. One of
these results was also independently obtained in [B15].
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The infinite dimensional case is more difficult and so far is much less developed.
For two arbitrary cocycles with values in the group of diffeomorphisms of a compact
manifold, higher regularity of the conjugacy was studied in [NT98] and recently coho-
mology of cocycles with equal periodic data was obtained in [BK16] under a certain
bunching assumption on both cocycles. In this paper we extend the results for finite
dimensional linear cocycles to the infinite-dimensional setting. We consider cocycles
with values in the group of invertible operators on a Banach space V . The simplest
examples are given by random and Markov sequences of operators. They correspond
to locally constant cocycles over subshifts of finite type.

The space L(V ) of bounded linear operators on V is a Banach space equipped with
the operator norm ‖A‖ = sup {‖Av‖ : v ∈ V, ‖v‖ ≤ 1}. The open set GL(V ) of
invertible elements in L(V ) is a topological group and a complete metric space with
respect to the metric

(1.1) d(A,B) = ‖A−B‖+ ‖A−1 −B−1‖.

Definition 1.1. Let f be a homeomorphism of a compact metric space X and let A
be a function from X to (GL(V ), d). The Banach cocycle over f generated by A is
the map A : X × Z → G defined by A(x, 0) = Id and for n ∈ N,

A(x, n) = An
x = A(fn−1x) ◦ · · · ◦ A(x) and A(x,−n) = A−nx = (An

f−nx)
−1.

Clearly, A satisfies the cocycle equation An+k
x = An

fkx
◦Ak

x.

We say that the cocycle A is β-Hölder if its generator A is Hölder continuous with
exponent 0 < β ≤ 1 with respect to the metric d, i.e. there exists K > 0 such that

d(A(x), A(y)) ≤ Kdist(x, y)β for all x, y ∈ X.

Hölder continuity is needed to develop a theory even for scalar cocycles. On the
other hand, higher regularity is rare for cocycles given by restrictions of the differential
of an Anosov diffeomorphism to the stable and unstable subbundles. Additionally,
symbolic dynamical systems have a natural Hölder structure, but not a smooth one.

Definition 1.2. The quasiconformal distortion of a cocycle A is the function

QA(x, n) = ‖An
x‖ · ‖(An

x)−1‖, x ∈ X and n ∈ Z.

The quasiconformal distortion is a measure of non-conformality of the cocycle. If
QA(x, n) ≤ K for all x and n, the cocycle is said to be uniformly quasiconformal, and
if QA(x, n) = 1 for all x and n, it is said to be conformal.

Next we define fiber bunching of a cocycle. This condition means that non-con-
formality of the cocycle is dominated, in a sense, by the contraction and expansion
in the base given by the functions ν and ν̂ in (2.1) and (2.2). In particular, bounded,
conformal, and uniformly quasiconformal cocycles are fiber bunched.
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Definition 1.3. A β-Hölder cocycle A over a hyperbolic system (X, f) as in Section 2
is fiber bunched if there exist numbers θ < 1 and L such that for all x ∈ X and n ∈ N,

(1.2) QA(x, n) · (νnx )β < Lθn and QA(x,−n) · (ν̂−nx )β < Lθn,

where νnx = ν(fn−1x) · · · ν(x) and ν̂−nx = (ν̂(f−nx))−1 · · · (ν̂(f−1x))−1.

This condition guarantees convergence of certain iterates of the cocycle along the
stable and unstable leaves, and it plays an important role in the study of non-
commutative cocycles. We use the weakest, “pointwise”, version of fiber bunching
with non-constant estimates of expansion and contraction in the base.

Standing Assumptions 1.4. In the results below, (X, f) is any of the transitive
hyperbolic systems described in Section 2, and A and B are β-Hölder Banach cocycles
over f .

The next proposition allows us to obtain fiber bunching of a cocycle A from fiber
bunching of its periodic data.

Proposition 1.5. Suppose that for a cocycle A there exist numbers θ̃ < 1 and L̃
such that whenever fkp = p, k ∈ N, we have,

(1.3) QA(p, k) · (νkp )β < L̃ θ̃k and QA(p,−k) · (ν̂−kp )β < L̃ θ̃k.

Then A is fiber bunched.

It follows that a cocycle with periodic data conjugate to that of a fiber bunched
cocycle via a bounded conjugacy is also fiber bunched.

Definition 1.6. We say that Banach cocycles A and B have conjugate periodic data
if for every periodic point p = fkp there exists C(p) ∈ GL(V ) such that

Bk
p = C(p) ◦Ak

p ◦ C(p)−1.

Corollary 1.7. Suppose that A is fiber bunched and B has conjugate periodic data
with bounded conjugacy, i.e. max {‖C(p)‖, ‖C(p)−1‖} ≤ M, where M is a constant
independent of p. Then B is also fiber bunched.

A natural equivalence for cocycles is cohomology, i.e. existence of a conjugacy,
which can be considered in various regularity classes.

Definition 1.8. Cocycles A and B are (measurably, continuously) cohomologous if
there exists a (measurable, continuous) function C : X → GL(V ), called a conjugacy
or a transfer map between A and B, such that

(1.4) An
x = C(fnx) ◦Bn

x ◦ C(x)−1 for all x ∈ X and n ∈ Z.

Clearly, if two cocycles are continuously cohomologous, then they have conjugate
periodic data. The converse is not true in general even when V is two-dimensional
and C(p) is bounded [S13]. If C(p) is Hölder, conjugating B by the extension of C
reduces the problem to the case of equal periodic data, i.e. An

p = Bn
p . Positive results
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for equal periodic data, as well as some results for conjugate data, were established
by W. Parry [Pa99] for compact G and, somewhat more generally, by K. Schmidt
[Sch99] for cocycles with “bounded distortion”. First results outside this setting were
obtained in [S13] for certain types of GL(2,R)-valued cocycles. In [S15] we considered
GL(n,R)-valued cocycles over hyperbolic systems. We showed that if a cocycle A is
fiber bunched and B has equal periodic data, then A and B are Hölder continuously
cohomologous. Moreover, we obtained Hölder cohomology under the assumption that
A is fiber bunched, B has conjugate periodic data and the conjugacy C(p) is β-Hölder
continuous at a fixed point of f . In the following theorem we extend the results to
Banach cocycles and remove the assumption that f has a fixed point.

Theorem 1.9. Suppose that a cocycle A is fiber bunched, B has conjugate periodic
data, and C(p) is β-Hölder continuous at a periodic point p0, i.e. there exists a
constant c such that d(C(p), C(p0)) ≤ c dist(p, p0)

β for every periodic point p.
Then there exists a unique β-Hölder continuous conjugacy C̄ between A and B such

that C̄(p0) = C(p0).

We do not assume fiber bunching for B as it follows immediately from Corollary 1.7.

We note that C̄(p) does not necessarily coincide with C(p) for p 6= p0. For example,
let B ≡ Id and let Ax = C̄(fx) ◦ C̄(x)−1 = C̄(fx) ◦Bx ◦ C̄(x)−1, where C is a Hölder
continuous function with C̄(p0) = Id. Then An

p = Bn
p = Id whenever p = fnp, and

so we can take C(p) = Id for each p.

Corollary 1.10. Suppose that a cocycle A is fiber bunched and a cocycle B has equal
periodic data, i.e. Ak

p = Bk
p whenever p = fkp. Then the cocycles are β-Hölder

continuously cohomologous.
In particular, if B is a cocycle with Bk

p = Id whenever p = fkp, then B is β-Hölder
continuously cohomologous to the identity cocycle.

The second part of this corollary was recently obtained by G. Grabarnik and M.
Guysinsky for cocycles with values in Banach algebras [GG].

Next we consider the question whether a measurable conjugacy between two cocy-
cles is continuous, i.e. coincides with a continuous conjugacy on a set of full measure.
Measurability is understood with respect to a suitable measure, for example the
measure of maximal entropy or the invariant volume. This problem was also first
considered in the case when one of the cocycles is the identity. The first result be-
yond this case was obtained by K. Schmidt [Sch99] for two cocycles with “bounded
distortion”, the prime examples being uniformly bounded GL(n,R)-valued cocycles
and ones with values in compact groups. A counterexample by M. Pollicott and C.
P. Walkden [PWa01] showed that additional assumptions are needed for a positive
answer in more general context: they constructed GL(2,R)-valued cocycles which are
measurably but not continuously cohomologous. Moreover both cocycles can be made
arbitrarily close to the identity, and in particular fiber bunched. In [S15] we showed
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that if A is fiber bunched and B is uniformly quasiconformal, i.e. QB(x, n) ≤ K for
all x and n, then any measurable conjugacy between A and B is β-Hölder continuous.

The following theorem extends the finite-dimensional results to the Banach setting.
One of the difficulties here is that the space (GL(V ), d) is not separable even if V is.
To use the tools of the theory of measurable functions, such as Lusin’s theorem, we
work with the strong operator topology, i.e. the topology of pointwise convergence.
We assume that B takes values in a precompact set, which for a finite dimensional
V is equivalent to uniform boundedness of B in (GL(V ), d).

Theorem 1.11. Suppose that the Banach space V is separable, a cocycle A is fiber
bunched and a cocycle B takes values in a subset of GL(V ) that is precompact in the
topology of pointwise convergence. Let µ be an ergodic invariant measure with full
support and local product structure. Then any µ-measurable conjugacy between A and
B coincides with a β-Hölder continuous conjugacy on a set of full measure.

The µ-measurability of the conjugacy means that the preimage of each Borel set in
GL(V ) is µ-measurable and the conjugacy equation (1.4) holds µ-almost everywhere.
We note that Borel σ-algebra in GL(V ) is the same for the metric d and for the strong
operator topology. A measure has local product structure if it is locally equivalent to
the product of its conditional measures on the local stable and unstable manifolds.
Examples of ergodic measures with full support and local product structure include
the measure of maximal entropy, more generally Gibbs (equilibrium) measures of
Hölder continuous potentials, and the invariant volume if it exists.

2. Hyperbolic systems in the base

Transitive Anosov diffeomorphisms. A diffeomorphism f of a compact connected
manifold X is called Anosov if there exist a splitting of the tangent bundle TX into
a direct sum of two Df -invariant continuous subbundles Es and Eu, a Riemannian
metric on X, and continuous functions ν and ν̂ such that

(2.1) ‖Dfx(vs)‖ < ν(x) < 1 < ν̂(x) < ‖Dfx(vu)‖
for any x ∈ X and unit vectors vs ∈ Es(x) and vu ∈ Eu(x). The sub-bundles Es

and Eu are called stable and unstable. They are tangent to the stable and unstable
foliations W s and W u respectively.

We define the local stable manifold of x, W s
loc(x), as a ball centered at x of radius

ρ in the intrinsic metric of W s(x). We choose ρ sufficiently small so that for every
x ∈ X we have ‖Dfy‖ < ν(x) for all y in W s

loc(x) and so that W s
loc(x) ∩ W u

loc(z)
consists of a single point for any sufficiently close x and z in X. The second property
is called the local product structure of the foliations. Local unstable manifolds are
defined similarly. It follows that for all n ∈ N,

(2.2)
dist(fnx, fny) < νnx · dist(x, y) for all x ∈ X and y ∈ W s

loc(x),

dist(f−nx, f−ny) < ν̂−nx · dist(x, y) for all x ∈ X and y ∈ W u
loc(x).



FIBER BUNCHING AND COHOMOLOGY FOR BANACH COCYCLES 6

A diffeomorphism f is (topologically) transitive if there is a point x in X with dense
orbit. All known examples of Anosov diffeomorphisms have this property.

Topologically mixing diffeomorphisms of locally maximal hyperbolic sets.
More generally, let f be a diffeomorphism of a manifold M. A compact f -invariant
set X ⊆ M is called hyperbolic if there exist a continuous Df -invariant splitting
TXM = Es ⊕ Eu, and a Riemannian metric and continuous functions ν, ν̂ on an
open set U ⊇ X such that (2.1) holds for all x ∈ X. The set X is called locally
maximal if X =

⋂
n∈Z f

−n(U) for some open set U ⊇ X.

Mixing subshifts of finite type. Let M be k × k matrix with entries from {0, 1}
such that all entries of MN are positive for some N . Let

X = {x = (xn)n∈Z : 1 ≤ xn ≤ k and Mxn,xn+1 = 1 for every n ∈ Z }.
The shift map f : X → X is defined by (fx)n = xn+1. The system (X, f) is called a
mixing subshift of finite type. We fix ν ∈ (0, 1) and consider the metric

dist(x, y) = dν(x, y) = νn(x,y), where n(x, y) = min { |i| : xi 6= yi}.
The following sets play the role of the local stable and unstable manifolds of x:

W s
loc(x) = { y | xi = yi, i ≥ 0 }, W u

loc(x) = { y | xi = yi, i ≤ 0 }
Indeed, for all x ∈ X and n ∈ N,

dist(fnx, fny) = νn · dist(x, y) for all y ∈ W s
loc(x),

dist(f−nx, f−ny) = νn · dist(x, y) for all y ∈ W u
loc(x),

and for any x, z ∈ X with dist(x, z) < 1 the intersection of W s
loc(x) and W u

loc(z)
consists of a single point. Thus, in this case we can take ν(x) = ν and ν̂(x) = ν−1.

3. Proofs of Proposition 1.5 and Corollary 1.7

3.1. Proof of Proposition 1.5. We consider the sequence of real-valued functions

(3.1) an(x) = log
(
QA(x, n) · (νnx )β

)
= log ‖An

x‖+ log ‖(An
x)−1‖+ log(νnx )β.

It is easy to verify that this sequence of functions is subadditive, i.e.

an+k(x) ≤ ak(x) + an(fkx) for all x ∈ X and n, k ∈ N.
We recall some results on subadditive sequences. Let f be a homeomorphism

of a compact metric space X and let an be a subadditive sequence of continuous
functions from X to R. For an ergodic f -invariant Borel probability measure µ
on X, let an(µ) =

∫
X
an(x) dµ. The sequence of numbers an(µ) is subadditive, i.e.

an+k(µ) ≤ an(µ) + ak(µ), and it is well known that

lim
n→∞

an(µ)/n = inf{ an(µ)/n : n ∈ N} =: χ(a, µ).

By the Subaddititive Ergodic Theorem,

lim
n→∞

an(x)/n = χ(a, µ) for µ-almost all x ∈ X.
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Lemma 3.1. [KS13, Proposition 4.9] Let f be a homeomorphism of a compact metric
space X and let an : X → R be a subadditive sequence of continuous functions.

If χ(a, µ) < 0 for every ergodic invariant Borel probability measure µ for f , then
there exists N such that aN(x) < 0 for all x ∈ X.

We will show that the assumption of the lemma is satisfied for the sequence an(x)
given by (3.1). We observe that for this sequence, χ(a, µ) can be written in terms of
Lyapunov exponents of the cocycles A and νβ.

Definition 3.2. Let µ be an ergodic f -invariant Borel probability measure on X.
The upper and lower Lyapunov exponents of A with respect to µ are

λ+(A, µ) = lim
n→∞

1

n
log ‖An

x‖ and λ−(A, µ) = lim
n→∞

1

n
log ‖(An

x)−1‖−1.

By the Subadditive Ergodic Theorem, each of these limits exists and is the same µ
almost everywhere. Now for the sequence in (3.1) for µ almost every x we have:

(3.2) χ(a, µ) = lim
n→∞

an(x)/n = λ+(A, µ)− λ−(A, µ) + λ(νβ, µ),

where λ(νβ, µ) = λ+(νβ, µ) = λ−(νβ, µ) for the scalar cocycle νβ.

The next theorem gives an approximation of the upper and lower Lyapunov expo-
nents of a cocycle in terms of its periodic data. It is Theorem 1.4 and Remark 1.5 in
[KS16] stated for our setting.

Theorem 3.3. Let (X, f) be a hyperbolic system, let µ be an ergodic f -invariant
Borel probability measure on X, and let A be a Hölder continuous Banach cocycle
over f . Then for each ε > 0 there exists a periodic point p = fkp in X such that

(3.3)

∣∣∣∣λ+(A, µ)− 1

k
log ‖Ak

p‖
∣∣∣∣ < ε and

∣∣∣∣λ−(A, µ)− 1

k
log ‖(Ak

p)
−1‖−1

∣∣∣∣ < ε.

Moreover, given finitely many Hölder continuous Banach cocycles over f and K ∈ N,
there exists a periodic point p = fkp with k > K which gives simultaneous approxi-
mation (3.3) for all the cocycles.

Let L̃ and θ̃ < 1 be as in the assumption (1.3). We choose K ∈ N such that

−3ε := (log L̃)/K + log θ̃ < 0. Then for each point p = fkp with k ≥ K we have

1

k
log
(
‖Ak

p‖ · ‖(Ak
p)
−1‖ · (νkp )β

)
≤ 1

k
log(L̃ θ̃k) =

1

k
log L̃+ log θ̃ < −3ε.

By Theorem 3.3 there exists a periodic point p = fkp with k > K such that (3.3)
holds for A, and also for the scalar cocycle νβ we have that λ(νβ, µp) = 1

k
log(νkp )β

is ε-close to λ(νβ, µ). Then by (3.2) we have∣∣∣∣χ(a, µ)− 1

k
log
(
‖Ak

p‖ · ‖(Ak
p)
−1‖ · (νkp )β

) ∣∣∣∣ < 3ε
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and hence χ(a, µ) < 0. Then by Lemma 3.1 there exists N such that aN(x) < 0 for
all x, and so QA(x,N) · (νNx )β < 1 for all x ∈ X. By continuity, there exists θ < 1
such that the left hand side is smaller than θ for all x. Writing n ∈ N as n = mN +r,
where m ∈ N ∪ {0} and 0 ≤ r < N , we obtain

QA(x, n) · (νnx )β ≤ QA(x,mN) · (νmNx )β ·QA(fmNx, r) · (νrfmNx)
β ≤ Lθ n,

where L = max {QA(x, r) (νrx)
β θ−N : x ∈ X, 0 ≤ r < N}. The inequality with ν̂ is

obtained similarly, and we conclude that the cocycle A is fiber bunched. �

3.2. Proof of Corollary 1.7. Since the cocycle A is fiber bunched, there exist
numbers L and θ < 1 such that QA(x, n) · (νnx )β < Lθn for all x ∈ X and n ∈ N. It
follows that whenever p = fkp,

QB(p, k) · (νkp )β ≤ ‖C(p)‖ ·QA(p, k) · ‖C(p)−1‖ · (νkp )β ≤M2Lθk.

Hence by Proposition 1.5 the cocycle B is fiber bunched. �.

4. Proof of Theorem 1.9

4.1. Cocycles over systems with a fixed point. The following result was estab-
lished in [S15] for GL(d,R)-valued cocycles.

Theorem 4.1. [S15, Theorem 2.4] Suppose that A is fiber bunched and B has conju-
gate periodic data. In addition, suppose that f has a fixed point p0 and the conjugacy
C(p) is β-Hölder continuous at p0, i.e. d(C(p), C(p0)) ≤ c dist(p, p0)

β for every pe-
riodic point p. Then there exists a unique β-Hölder continuous conjugacy C̄ between
A and B such that C̄(p0) = C(p0).

For Banach cocycles, the proof holds without modifications, except for using Corol-
lary 1.7 instead of Proposition 2.3 in [S15] to obtain fiber bunching of B.

We give an outline of the proof of this theorem since we will refer to it later. We
consider the cocycle B̃ = C(p0) ◦B ◦C(p0)

−1 and the function C̃(p) = C(p)C(p0)
−1,

so that B̃p0 = Ap0 and C̃(p0) = Id. If C̃(x) is a conjugacy between A and B̃

with C̃(p0) = Id, then C̄(x) = C̃(x)C(p0) is a conjugacy between A and B with
C̄(p0) = C(p0). Thus it suffices to consider the case when Bp0 = Ap0 and C(p0) = Id.
First the conjugacy C̄(x) is constructed along the stable and unstable manifolds of
p0 using the stable and unstable holonomies (see Section 4.2 below):

(4.1)
C̄s(x) = HA,s

p0, x
◦HB,s

x, p0
for x ∈ W s(p0),

C̄u(x) = HA,u
p0, x
◦HB,u

x, p0
for x ∈ W u(p0).

For a homoclinic point x for p0, i.e. x ∈ W s(p0) ∩W u(p0), it is shown that

C̄s(x) = C̄u(x)
def
= C̄(x).
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Thus we obtain C̄ on the set of homoclinic points of p0, which is dense in X. The
function C̄ is β-Hölder continuous on this set, and hence it can be extended to X.
This completes the outline.

4.2. Holonomies. An important role in the proof of Theorem 4.1, as well as in
the proof of Theorem 1.9, is played by holonomies of cocycles. This terminology
for certain limits of iterates of a linear cocycle was introduced in [V08] and the
holonomies were further studied in [ASV13, KS13, S15]. The result below gives
existence of holonomies under the weakest fiber bunching assumption (1.2).

Let V = X × V be a trivial vector bundle over X. For a Banach cocycle A, we
view Ax as a linear map from Vx, the fiber at x, to Vfx, so An

x : Vx → Vfnx and
A−nx : Vx → Vf−nx.

Proposition 4.2. [S15, Proposition 4.4] Suppose that a cocycle A is fiber bunched.
Then for every x ∈ X and y ∈ W s(x) the limit

(4.2) HA,s
x,y = lim

n→∞
(An

y )−1 ◦An
x,

exists and satisfies

(H1) HA,s
x, y is a linear map from Vx to Vy;

(H2) HA,s
x, x = Id and HA,s

y, z ◦HA,s
x, y = HA,s

x, z , which implies (HA,s
x, y)

−1 = HA,s
y, x;

(H3) HA,s
x, y = (An

y )−1 ◦HA,s
fnx, fny ◦An

x for all n ∈ N;

(H4) ‖HA,s
x,y − Id ‖ ≤ c dist(x, y)β, where c is independent of x and y ∈ W s

loc(x).

The continuous map HA,s : (x, y) 7→ HA,s
x, y , where x ∈ X, y ∈ W s(x), is called the

(standard) stable holonomy for A. The unstable holonomy HA,u is defined similarly:

HA,u
x, y = lim

n→∞

(
(A−ny )−1 ◦ (A−nx )

)
= lim

n→∞

(
An
f−ny ◦ (An

f−nx)
−1) , where y ∈ W u(x).

It satisfies (H1, 2, 4) and

(H3′) HA,u
x, y = (A−ny )−1 ◦HA,u

f−nx, f−ny ◦A
−n
x for all n ∈ N.

4.3. Removing the fixed point assumption. Now we obtain the Hölder continu-
ous conjugacy between the cocycles assuming Hölder continuity of C(p) at a periodic
point p0. As was explained before, we can assume that Ap0 = Bp0 and C(p0) = Id.
Let k be a period of the point p0. Then p0 is a fixed point for fk and so Theorem 4.1
gives a unique Hölder conjugacy C̄ between the iterated cocycles Ak and Bk over fk

with C̄(p0) = Id. We will show that C̄ is also a conjugacy between A and B following
the approach of [BK16, Sch99].

To simplify the notations we write p for p0 and C for C̄. We consider a point
x ∈ W s(p) ∩W u(fk−1p), so that fx ∈ W u(p). We will show that

(4.3) Ax = C(fx) ◦Bx ◦ C(x)−1, i.e. C(x) = A−1x ◦ C(fx) ◦Bx.
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Since such points x are dense in X and all the functions are continuous, it follows
that the equation holds for all x ∈ X.

Now we prove (4.3). Using equations (4.1) we obtain

C(x) = Cs(x) = HAk,s
p, x ◦HBk,s

x, p =

= lim
n→∞

(Ank
x )−1 ◦Ank

p ◦ (Bnk
p )−1 ◦Bnk

x = lim
n→∞

(Ank
x )−1 ◦Bnk

x , and

C(fx) = Cu(fx) = HAk,u
p, fx ◦H

Bk,u
fx, p = lim

m→∞
Amk
f−mkfx ◦ (Bmk

f−mkfx)
−1

= lim
m→∞

Amk
f−mk+1x ◦ (Bmk

f−mk+1x)
−1.

Since A−1x ◦ C(fx) ◦Bx equals

lim
m→∞

A−1x ◦Amk
f−mk+1x ◦ (Bmk

f−mk+1x)
−1 ◦Bx = lim

m→∞
Amk−1
f−mk+1x

◦ (Bmk−1
f−mk+1x

)−1,

we need to show that

lim
n→∞

(Ank
x )−1 ◦Bnk

x = lim
m→∞

Amk−1
f−mk+1x

◦ (Bmk−1
f−mk+1x

)−1.

As both limits exist, so does the following limit and it suffices to prove the equality

lim
m,n→∞

(Ank
x )−1 ◦Bnk

x ◦Bmk−1
f−mk+1x

◦ (Amk−1
f−mk+1x

)−1 = Id.

Since x ∈ W s(p) and fx ∈ W u(p),

fnkx→ p as n→∞ and f−mk+1x = f−mkfx→ p as m→∞.
Moreover, by (2.1) there is a constant c1(x) such that for all n,m ∈ N,

dist(fnkx, p) < νnkx · c1(x) distW s(p)(x, p) =: c2(x) νnkx and

dist(f−mk+1x, p) < ν̂−mk+1
x · c1(x) distWu(p)(x, p) =: c3(x) ν̂−mk+1

x .

Let δ0 be as in Anosov Closing Lemma [KtH, Theorem 6.4.15]. We take δ < δ0 and
let m and n be the smallest positive integers such that both distances above are less
than δ/2. Then we have

(4.4) dist(fnkx, f−mk+1x) < δ and δ < c4(x) min{νnkx , ν̂−mk+1
x }.

Applying the lemma to the orbit segment {f ix : i = −mk + 1, . . . , nk}, we obtain
a periodic point q = f (m+n)k−1q such that

dist(f ix, f iq) ≤ Lδ for i = −mk + 1, . . . , nk.

Let z be the intersection point of W s
loc(q) and W u

loc(x). Then by the local product
structure,

(4.5) dist(f iz, f ix) ≤ c5δ and dist(f iz, f iq) ≤ c5δ for i = −mk + 1, . . . , nk.

Since z ∈ W s(q), property (H3) of the holonomies yields

Ank
z = HA,s

fnkq, fnkz
◦Ank

q ◦HA,s
z, q ,
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and since fnkz ∈ W u(fnkx) using property (H3′) we obtain

Ank
x = HA,u

fnkz, fnkx
◦Ank

z ◦HA,u
x, z .

Thus

Ank
x = HA,u

fnkz, fnkx
◦HA,s

fnkq, fnkz
◦Ank

q ◦HA,s
z, q ◦HA,u

x, z .

It follows from property (H4) that

Hs,A
z,q = Id +Rs,A

z,q , where ‖Rs,A
z,q ‖ ≤ c dist(z, q)β ≤ c6δ

β.

Similar estimates hold for the other holonomies, as well as their inverses, due to (4.5).
Thus we obtain

(4.6) (Ank
x )−1 = (Id +R1) ◦ (Ank

q )−1 ◦ (Id +R2), where ‖R1‖, ‖R2‖ ≤ c6δ
β,

and similarly,

(4.7) (Amk−1
f−mk+1x

)−1 = (Id +R3) ◦ (Amk−1
f−mk+1q

)−1 ◦ (Id +R4),

where ‖R3‖, ‖R4‖ ≤ c6δ
β. Let q′ = f−mk+1q = fnkq and x′ = f−mk+1x. Then

(4.8) Bnk
x ◦Bmk−1

f−mk+1x
= B

(m+n)k−1
x′ = (Id +R5) ◦B(m+n)k−1

q′ ◦ (Id +R6),

where ‖R5‖, ‖R6‖ ≤ c6δ
β. Since q′ is a periodic point of period (m+ n)k − 1, by the

assumption there exists C(q′) such that

(4.9)
B

(m+n)k−1
q′ = C(q′) ◦A(m+n)k−1

q′ ◦ C(q′)−1, where C(q′) = Id +R7 and

C(q′)−1 = Id +R8 with ‖Rn
7‖, ‖Rn

8‖ ≤ c′7 dist(p, q′)β ≤ c7δ
β.

It follows from (4.8) and (4.9) that

(4.10) Bnk
x ◦Bmk−1

f−mk+1x
= (Id +R9) ◦Ank

q ◦Amk−1
f−mk+1q

◦ (Id +R10),

where ‖R9‖, ‖R10‖ ≤ c8δ
β.

Using (4.6), (4.7), and (4.10) and combining terms of the form Id +Ri we obtain

(Ank
x )−1 ◦ Bnk

x ◦Bmk−1
f−mk+1x

◦ (Amk−1
f−mk+1x

)−1 =

(Id +R1) ◦ (Ank
q )−1 ◦ (Id +R11) ◦Ank

q ◦Amk−1
f−mk+1q

◦ (Id +R12) ◦ (Amk−1
f−mk+1q

)−1 ◦ (Id +R4)

= Id + (Ank
q )−1 ◦R11 ◦Ank

q ◦Amk−1
f−mk+1q

◦R12 ◦ (Amk−1
f−mk+1q

)−1

+(Ank
q )−1 ◦R11 ◦Ank

q + Amk−1
f−mk+1q

◦R12 ◦ (Amk−1
f−mk+1q

)−1 + smaller terms.

Since ‖Ri‖ ≤ c9δ
β for each i, where δ satisfies (4.4), and the cocycle is fiber bunched,

we have

‖Ank
q ‖ · ‖(Ank

q )−1‖ · ‖R11‖ ≤ QA(q, nk) · cδβ ≤ QA(q, nk) · c10(νnkx )β = c10Lθ
nk and

‖Amk−1
f−mk+1q

‖ · ‖(Amk−1
f−mk+1q

)−1‖ · ‖R12‖ ≤ c10(ν̂
−mk+1
x )β = c10Lθ

mk−1.
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We conclude that in the operator norm topology,

lim
n,m→∞

(Ank
x )−1 ◦Bnk

x ◦Bmk−1
f−mk+1x

◦ (Amk−1
f−mk+1x

)−1 = Id,

and so (4.3) holds. �

5. Proof of Theorem 1.11

We consider the strong operator topology, i.e. the topology of pointwise conver-
gence, on the space of linear operators L(V ). It is induced by the family of semi-norms
Pv(A) = ‖A(v)‖, where v ∈ V . This topology is weaker than the operator norm topol-
ogy, but they generate the same Borel σ-algebra. Indeed, for any A ∈ L(V ) we have
‖A‖ = sup ‖A(vi)‖ = supPvn(A), where the supremum is taken over a dense set
{vn : n ∈ N} in the unit ball in V . Since the functions Pvn are continuous in the
strong operator topology, it follows that ‖A‖ is Borel measurable and thus the balls
in the operator norm belong to the Borel σ-algebra of the strong operator topology.

Since V is separable, this topology is separable and metrizable on any set G ⊂ L(V )
that is bounded in norm. Indeed, let {vn : n ∈ N} be a countable dense set in the
unit ball in V . Then

(5.1) d̄(A,B) =
∞∑
n=1

‖A(vn)−B(vn)‖
1 + ‖A(vn)−B(vn)‖

· 2−n

is a distance on L(V ). The convergence in d̄ is the pointwise convergence on the
set {vn : n ∈ N}. It induces the strong operator topology on G since for a bounded
sequence convergence on each vn is equivalent to convergence on each v ∈ V . To show
separability, we take the set {vn} in the definition of d̄ to be linearly independent
and consider a countable dense set U = {un : n ∈ N} in V . Then the set of all finite
sequences {un1 , . . . , unk

} in U is countable and for each finite sequence we can take a
bounded operator Bn1,...,nk

such that

Bn1,...,nk
(vi) = uni

for i = 1, . . . , k.

This can be done by extending the coordinate functionals xi on span{v1, . . . , vk} to

V using Hahn-Banach Theorem and defining Bn1,...,nk
(v) =

∑k
i=1 xi(v)uni

. The set
of such operators is a countable dense set in (L(V ), d̄). Indeed, given ε > 0 and
A ∈ L(V ) we can fix a large k so that the “tail” of the series in (5.1) is small and
then choose uni

sufficiently close to A(vi) so that

‖A(vi)−Bn1,...,nk
(vi)‖ = ‖A(vi)− uni

‖ is small for i = 1, . . . , k.

Thus the strong operator topology is separable and hence second countable on G.

The corresponding strong operator topology on GL(V ) is induced by the embed-
ding i : GL(V ) → L(V ) × L(V ) given by i(A) = (A,A−1). The convergence in this
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topology is the pointwise convergence of operators and their inverses: a sequence An
converges to A if for each v ∈ V ,

‖An(v)− A(v)‖+ ‖A−1n (v)− A−1(v)‖ → 0 as n→∞.
It follows from the results for L(V ) that this topology is separable and metrizable by

d̃(A,B) = d̄(A,B) + d̄(A−1, B−1)

on any set G ⊂ GL(V ) bounded with respect to the metric d given by (1.1).
By the Uniform Boundedness Principle, a sequence An that converges in strong

operator topology on GL(V ) is bounded in the metric d, and hence any subset of
GL(V ) that is compact in the strong operator topology is bounded in d. Since the
cocycle B takes values in such a subset, B is uniformly bounded, and thus satisfies
the fiber bunching condition (1.2).

Let C be a µ-measurable conjugacy between A and B. First we show that C
intertwines holonomies of A and B on a set of full measure, i.e. there exists a set
Y ⊂ X with µ(Y ) = 1 such that

(5.2) HA,s
x,y = C(y) ◦HB,s

x,y ◦ C(x)−1 for all x, y ∈ Y such that y ∈ W s(x),

and a similar statement holds for the unstable holonomies. Since

C(x) = (An
x)−1 ◦ C(fnx) ◦Bn

x and HA,s
x, y = (An

y )−1 ◦HA,s
fnx, fny ◦A

n
x,

it suffices to prove that HA,s
fnx,fny = C(fny)◦HB,s

fnx,fny◦C(fnx)−1. Thus we can assume
that y lies on the local stable manifold of x.

Let x ∈ X and y ∈ W s
loc(x). Since Ax = C(fx) ◦Bx ◦ C(x)−1, we have

(5.3)

(An
y )−1 ◦An

x = C(y) ◦ (Bn
y )−1 ◦ C(fny)−1 ◦ C(fnx) ◦Bn

x ◦ C(x)−1 =

= C(y) ◦ (Bn
y )−1 ◦ (Id + rn) ◦Bn

x ◦ C(x)−1 =

= C(y) ◦ (Bn
y )−1 ◦Bn

x ◦ C(x)−1 + C(y) ◦ (Bn
y )−1 ◦ rn ◦Bn

x ◦ C(x)−1,

where

rn = C(fny)−1 ◦ C(fnx)− Id = C(fny)−1 ◦ (C(fnx)− C(fny)).

Since C is µ-measurable, ‖C‖ and ‖C−1‖ are measurable functions from X to R
and hence there exists a compact set S1 ⊂ X with µ(S1) > 3/4 such that ‖C‖ and
‖C−1‖ are bounded on S1. Let G ⊂ GL(V ) be a d-bounded set that contains the
values of C and C−1 on the set S1. Then C restricted to S1 is a µ-measurable function
to the separable, and hence second countable, metric space (G, d̃). Hence by Lusin’s
theorem there exists a compact set S ⊂ S1 with µ(S) > 1/2 such that C is uniformly
continuous on S.

Let Y be the set of points in X for which the frequency of visiting S equals
µ(S) > 1/2. By Birkhoff Ergodic Theorem, µ(Y ) = 1. If x and y are in Y , there
exists a sequence {ni} such that fnix and fniy are in S for all i. Thus ‖C‖, ‖C−1‖
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are uniformly bounded on the set {fnix, fniy} and ‖(C(fnix) − C(fniy))(v)‖ → 0
for every v ∈ V . Hence

(5.4) the sequence ‖rni
‖ is bounded and ‖rni

(v)‖ → 0 for every v ∈ V.

We rewrite the formula (5.3) as

(5.5) C(y)−1 ◦ (An
y )−1 ◦An

x ◦ C(x)− (Bn
y )−1 ◦Bn

x = (Bn
y )−1 ◦ rn ◦Bn

x.

By (4.2) the left hand side converges in the operator norm to

(5.6) C(y)−1 ◦HA,s
x,y ◦ C(x)−HB,s

x,y .

Hence the right hand side of (5.5) has a limit in the operator norm. To prove that
it equals 0, it suffices to show that for each v ∈ V , ((Bn

y )−1 ◦ rn ◦ Bn
x)(v) tends to 0

along a subsequence.
Let {ni} be the sequence in (5.4). Since B takes values in a compact subset of

GL(V ) with strong operator topology, there exists a subsequence {nij} of {ni} such

that (B
nij
x )(v) converges for every v and, as we observed above, (Bn

y )−1 is uniformly
bounded. Now it follows from (5.4) that(

(B
nij
y )−1 ◦ rnij

◦B
nij
x

)
(v)→ 0 for every v ∈ V.

We conclude that (5.6) equals 0 and so (5.2) follows. The statement for the unstable
holonomies is proven similarly.

Now we establish Hölder continuity of C on a set of full measure. We consider a
small open set U in X with the product structure of stable and unstable manifolds,

U = W s
loc(x0)×W u

loc(x0) = {W s
loc(x) ∩W u

loc(y) : x ∈ W s
loc(x0) and y ∈ W u

loc(x0)}.

We take a finite cover ofX by such sets. It suffices to show that C is Hölder continuous
on a full measure subset of each such set U .

Since the measure µ has local product structure, µ is equivalent to the product of
conditional measures on W s

loc(x0) and W u
loc(x0), and hence for µ almost every local

stable leaf in U , the set of points of Y on the leaf has full conditional measure. Let
YU be the the set of points in Y ∩U that lie on such leaves. Then YU has full measure
in U . Since the holonomies of the unstable foliation are absolutely continuous with
respect to the conditional measures, for any two points x and z in YU , there exists a
point y ∈ W s

loc(x) ∩ YU such that y′ = W u
loc(y) ∩W s

loc(z) is also in YU .

Now we show that C and C−1 are bounded on YU . We fix x ∈ YU and for any
z ∈ YU we consider y and y′ as above. Then by equation (5.2) and property (H4) of
the holonomies we have

(5.7) C(y) = HA,s
x,y ◦ C(x) ◦ (HB,s

x,y )−1 = (Id +RA,s
x,y ) ◦ C(x) ◦ (Id +RB,s

x,y ),
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where ‖RA,s
x,y‖, ‖RB,s

x,y‖ ≤ c dist(x, y)β. If the set U is sufficiently small, then the terms
R are less than one in norm and it follows that ‖C(y)‖ ≤ 4‖C(x)‖. Also consid-
ering the pairs y, y′ and y′, z we conclude that ‖C(z)‖ ≤ 43‖C(x)‖, and similarly
‖C(z)−1‖ ≤ 43‖C(x)−1‖.

Now we establish Hölder continuity of C on YU . We fix x, z ∈ YU and consider y
and y′ as above. Then by (5.7) we have

C(y) ◦ C(x)−1 = (Id +RA,s
x,y ) ◦ C(x) ◦ (Id +RB,s

x,y ) ◦ C(x)−1 =

= Id +RA,s
x,y + C(x) ◦RB,s

x,y ◦ C(x)−1 +RA,s
x,y ◦ C(x) ◦RB,s

x,y ◦ C(x)−1.

Since C and C−1 are bounded on YU , it follows that

‖C(y) ◦ C(x)−1 − Id‖ ≤ c1 dist(x, y)β.

Hence we have

d(C(x), C(y)) = ‖C(x)− C(y)‖+ ‖C(x)−1 − C(y)−1‖ ≤
≤ ‖C(x)C(y)−1 − Id‖ · ‖C(y)‖+ ‖C(x)−1‖ · ‖Id− C(x)C(y)−1‖ ≤
≤ c2 dist(x, y)β, where c2 does not depend on x and y.

Using similar estimates for y, y′ and y′, z and the local product structure of the stable
and unstable manifolds we conclude that for all x, z ∈ YU ,

d(C(x), C(z)) ≤ c3 dist(x, z)β.

Thus we obtain Hölder continuity of C on a set of full measure Y1 ⊆ Y . Let
Y2 =

⋂∞
n=−∞ f

n(Y1). Then Y2 is f -invariant and A(x) = C(fx) ◦ B(x) ◦ C(x)−1 for
all x ∈ Y2. Since µ has full support and µ(Y2) = 1, the set Y2 is dense in X. Hence
C extends from Y2 to a Hölder continuous conjugacy C̃ on X. �
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[GG] G. Grabarnik and M. Guysinsky. Livšic theorem for Banach rings. To appear in Discrete and
Continuous Dynamical Systems.

[K11] B. Kalinin. Livšic theorem for matrix cocycles. Annals of Math., 173 (2011), no. 2, 1025-1042.

[KS13] B. Kalinin and V. Sadovskaya. Cocycles with one exponent over partially hyperbolic systems.
Geometriae Dedicata, Vol. 167, Issue 1 (2013), 167-188.

[KS16] B. Kalinin and V. Sadovskaya. Periodic approximation of Lyapunov exponents for Banach
cocycles. To appear in Ergodic Theory Dynam. Systems.

[KtH] A. Katok and B. Hasselblatt. Introduction to the modern theory of dynamical systems.
Encyclopedia of Mathematics and its Applications 54, Cambridge University Press, 1995.



FIBER BUNCHING AND COHOMOLOGY FOR BANACH COCYCLES 16

[KtN] A. Katok and V. Nitica. Rigidity in Higher Rank Abelian Group Actions: Volume 1, Intro-
duction and Cocycle Problem. Cambridge University Press, 2011.
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