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Abstract. We study perturbations of a partially hyperbolic toral automorphism
L which is diagonalizable over C and has a dense center foliation. For a small
perturbation of L with a smooth center foliation we establish existence of a smooth
leaf conjugacy to L. We also show that if a small perturbation of an ergodic
irreducible L has smooth center foliation and is bi-Hölder conjugate to L, then the
conjugacy is smooth. As a corollary, we show that for any symplectic perturbation
of such an L any bi-Hölder conjugacy must be smooth. For a totally irreducible
L with two-dimensional center, we establish a number of equivalent conditions on
the perturbation that ensure smooth conjugacy to L.

1. Introduction and statements of results

Partially hyperbolic ergodic toral automorphisms, which are sometimes called
quasi-hyperbolic, form an important class of algebraic partially hyperbolic systems.
They have been extensively studied and shown to have strong stochastic and other
properties, often similar to those of hyperbolic systems: Bernoulli property [Kz71],
uniqueness of the measure of maximal entropy [B67], exponential mixing [L82],
density of periodic measures [M80] and their asymptotic equidistribution [L82], and
cohomological properties similar to Livšic periodic point theorem and measurable
Livšic theorem [V86].

Perturbations of partially hyperbolic ergodic toral automorphisms give a natural
class of partially hyperbolic systems. In contrast to linear models, the properties
of such perturbations are much less understood. Some of the difficulties presented
by these nonlinear systems are due to multidimensional non-compact center leaves.
For totally irreducible ergodic toral automorphisms with two-dimensional center fo-
liation, stable ergodicity was established by Rodriguez Hertz in [RH05]. Further
properties for this case, including the stable Bernoulli property for symplectic per-
turbations, were obtained by Avila and Viana in [AV10].

In this paper we study rigidity properties for perturbations of partially hyper-
bolic toral automorphisms related to the smoothness of their center foliation. In
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particular, we obtain smoothness of the leaf conjugacy to the linear system, and
smoothness of the conjugacy when one exists. Our main results hold for systems
with dense center foliation of any dimension, but have no analogs in the hyperbolic
case. Further results are then deduced for systems with two-dimensional center
foliation using [RH05, AV10].

We consider a linear map L ∈ SL(d,Z) and use the same notation for the cor-
responding toral automorphism L : Td → Td. The map L is called irreducible if it
has no rational invariant subspaces, or equivalently if its characteristic polynomial
is irreducible over Q. The automorphism L is ergodic with respect to the Lebesgue
measure if and only if no root of unity is its eigenvalue. We define the stable, unsta-
ble, and center subspaces Es, Eu, and Ec for L as those corresponding to eigenvalues
of modulus less than 1, greater than 1, and equal to 1, respectively. We denote by
W s, W u, and W c the corresponding linear foliations. An irreducible ergodic auto-
morphism L is always partially hyperbolic, that is, it has non-trivial Es and Eu. We
will consider partially hyperbolic automorphisms L with non-trivial center Ec.

We consider a C∞ diffeomorphism f which is C1 close to L. Such f is partially
hyperbolic, more precisely, there exist a nontrivial Df -invariant splitting Es⊕Ec⊕Eu
of the tangent bundle of Td, a continuous Riemannian metric on Td, and constants
ν < 1, ν̂ > 1, γ, γ̂ such that for any x ∈ M and any unit vectors vs ∈ Es(x),
vc ∈ Ec(x), and vu ∈ Eu(x),

‖Dxf(vs)‖ < ν < γ < ‖Dxf(vc)‖ < γ̂ < ν̂ < ‖Dxf(vu)‖.

The sub-bundles Es, Eu, and Ec are called stable, unstable, and center. The stable
and unstable sub-bundles are tangent to the stable and unstable foliations Ws and
Wu, respectively. The leaves of these foliations are C∞. By structural stability of
partially hyperbolic systems [HPS77], f is dynamically coherent, that is, the bundles
Ec, Ecu = Eu ⊕ Ec, and Ecs = Es ⊕ Ec are tangent to foliations Wc, Wcu, and Wcs

with Cr leaves, where r > 1 is determined by expansion/contraction in Ec relative
to the rates for Eu and Es. Moreover, f is leaf conjugate to L by a bi-Hölder
homeomorphism h close to the identity. A leaf conjugacy is a homeomorphism
h : Td → Td mapping the leaves of Wc homeomorphically to the leaves of W c such
that

h(f(Wc(x))) = W c(L(h(x))) for every x ∈ Td.

Now we formulate our main results. First we establish existence of a smooth leaf
conjugacy for a perturbation with a smooth center foliation.

Theorem 1.1 (Smooth leaf conjugacy). Let L : Td → Td be a partially hyperbolic
automorphism which is diagonalizable over C and has dense center foliation W c.
Let f : Td → Td be a C∞ diffeomorphism which is C1 close to L. If Wc is a C∞

foliation, then f is C∞ leaf-conjugate to L.
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We note that the theorem applies, in particular, to all irreducible partially hy-
perbolic automorphisms. Also, if the theorem applies to automorphisms L1 and L2,
then it applies to L1 × L2 and L1 × IdTk as well.

Remark 1.2. Theorem 1.1 has a finite regularity version: if Wc is a Cr foliation
with r > r(L) from (1.1) below, then f is Cq leaf-conjugate to L where q = r if
r /∈ N and q = r − ε for any ε > 0 if r ∈ N. This can be obtained by the same
argument using Cr normal form coordinates and Journé’s lemma [J88].

Next we consider the case when f is bi-Hölder conjugate to L. That is, we assume
that there exists a Hölder continuous conjugacy h with a Hölder continuous inverse.
We obtain C∞ smoothness of this conjugacy if Wc has sufficient regularity defined
as follows. Let 1 < ρumin ≤ ρumax be the smallest and largest moduli of unstable
eigenvalues of L, and let 0 < ρsmin ≤ ρsmax < 1 be the smallest and largest moduli of
its stable eigenvalues. We set

(1.1)

ru(L) = (log ρumax)/(log ρumin) ≥ 1,

rs(L) = (log ρsmin)/(log ρsmax) ≥ 1,

r(L) = max {ru(L), rs(L)}.

Theorem 1.3 (Smoothness of bi-Hölder conjugacy). Let L : Td → Td be an ir-
reducible ergodic automorphism and let r > r(L). Let f : Td → Td be a volume-
preserving C∞ diffeomorphism that is sufficiently C1 close to L. If f has Cr center
foliation and is conjugate to L by a bi-Hölder homeomorphism h, then h is C∞.

Remark 1.4. If Eu and Es are one-dimensional it suffices to take r = 1 rather
than r > r(L) = 1, that is, to assume that the center foliation is C1. Indeed, for
one-dimensional leaves the analog of the centralizer part of Theorems 2.1 and 2.3,
which we use in the proof, was established in [KtL91] in C1 regularity.

For a symplectic perturbation f we obtain the following corollary.

Corollary 1.5. Let L : Td → Td be a symplectic irreducible ergodic automorphism
and let f : Td → Td be a C∞ symplectic diffeomorphism which is C1-close to L. If
f is bi-Hölder conjugate to L, then f is C∞ conjugate to L.

This result is a rare example of rigidity in smooth dynamics, in the sense of “weak
equivalence implies strong equivalence”, that holds for a single system rather than
an action of a higher rank group. It relies on coexistence of hyperbolic and elliptic
behavior in one system, and thus is also a rare example of a result for partially
hyperbolic systems that does not cover hyperbolic systems as a particular case.

Remark 1.6. Theorem 1.3 and Corollary 1.5 hold more generally for any auto-
morphism L which is partially hyperbolic, ergodic, diagonalizable over C and has a
dense center foliation. This class of automorphisms includes products of irreducible
ergodic automorphisms. The proof is essentially the same utilizing Proposition 5.1.
See Remark 3.3.
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Now we consider the case of L with two-dimensional center. We call a toral
automorphism L totally irreducible if Ln is irreducible for every n ∈ N. Such an
L is always ergodic. For a totally irreducible automorphism L with exactly two
eigenvalues of absolute value one, that is dimEc = 2, Rodriguez Hertz proved in
[RH05] that it is stably ergodic, more precisely, any sufficiently C22-small volume-
preserving perturbation of L is also ergodic. For such L we use some results from
[RH05] and [AV10] to obtain further corollaries of Theorem 1.3.

We recall definitions accessibility and Lyapunov exponents before stating further
results. A partially hyperbolic diffeomorphism f of Td is called accessible if any two
points in Td can be connected by an su-path, that is, by a concatenation of finitely
many subpaths each lying in a single leaf of Ws or Wu.

Let µ be an ergodic f -invariant measure. Then by Oseledets Multiplicative Er-
godic Theorem [O68] there exist numbers λ1 < · · · < λm, called the Lyapunov
exponents of f with respect to µ, an f -invariant set Λ with µ(Λ) = 1, and a Df -
invariant Lyapunov splitting Rd = TxTd = E1

x ⊕ · · · ⊕ Emx for x ∈ Λ such that

lim
n→±∞

n−1 log ‖Dxf
n(v)‖ = λi for any i = 1, . . . ,m and any 0 6= v ∈ E ix.

Clearly, the Lyapunov splitting refines the partially hyperbolic one.

In the next theorem and corollary we set N = 5 if d > 4 and N = 22 if d = 4.

Theorem 1.7 (Rigidity for two-dimensional center). Let L : Td → Td be a totally
irreducible automorphism with exactly two eigenvalues of absolute value one and let
r > r(L). Let f : Td → Td be a volume-preserving C∞ diffeomorphism which is
sufficiently CN close to L and has Cr center foliation. Then any of the following
equivalent conditions implies that f is C∞ conjugate to L.

(1) Lyapunov exponents of f with respect to the volume on Ec are all 0;
(2) Lyapunov exponents of f with respect to the volume on Ec are equal;
(3) f is not accessible;
(4) f is topologically conjugate to L;
(5) Ws and Wu are jointly integrable, that is, there exists a continuous foliation

of dimension dimWs + dimWu sub-foliated by Ws and Wu.

Corollary 1.8. Let L be as in Theorem 1.7 and symplectic, and let f : Td → Td be
a C∞ symplectic diffeomorphism which is sufficiently CN -close to L. Then any of
the following equivalent conditions implies that f is C∞ conjugate to L.

(0) f has at least one zero Lyapunov exponent with respect to the volume;
(1-5) as in Theorem 1.7;

(6) Es ⊕ Eu is C1.

Remark 1.9. Thus for perturbations as in Corollary 1.8 we have a dichotomy:
either f is non-uniformly hyperbolic or f is smoothly conjugate to L.
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This strengthens the earlier result in the same setting [AV10, Theorem I] which
showed that either f is non-uniformly hyperbolic or f is conjugate to L via a volume-
preserving homeomorphism. Smoothness of the conjugacy was only known for the
case of T4 [AV10].

Our results are somewhat similar to some of the recent rigidity results for partially
hyperbolic systems related to absolute continuity of the center foliation [AVW15,
AVW, SY18, DWX]. For example, our Theorem 1.1 can be compared to a theorem
of Avila-Viana-Wilkinson [AVW] on T3. Namely, they consider volume preserving
perturbations f of a partially hyperbolic automorphism L(x, y) = (Ax, y) of the
3-torus T3. Then, by applying the invariance principle [AV10], they show that the
center foliation is absolutely continuous if and only if it is smooth. Consequently, f is
smoothly conjugate to a diffeomorphism of the form (x, y) 7→ (g(x), y+ϕ(x)). This
result was generalized to the case of higher dimensional compact center foliation by
Damjanovic and Xu [DWX, Theorem 6].

We note that papers [AVW15, AVW, SY18, DWX] consider diffeomorphisms
whose center foliation either has compact leaves or comes from the orbit foliation of
a hyperbolic flow. Further, they also strongly rely on one-dimensionality of stable
and unstable foliations (or a replacement assumption such as quasi-conformality or
splitting into one-dimensional subbundles). In contrast our methods treat all di-
mensions in a uniform way and primarily rely on denseness of center leaves and the
theory of normal forms [GuKt98, Gu02, KS17, K].

Structure of the paper. In Section 2 we summarize results on normal forms
that play an important part in our arguments. Then we prove Theorem 1.3 in
Section 3. The existence of the conjugacy in this case allows us to present one of
the main arguments, smoothness along stable/unstable foliations via normal forms
and holonomies, in a simplified form. We deduce Corollary 1.5, Theorem 1.7, and
Corollary 1.8 in Section 4. In section Section 5 we prove Theorem 1.1, giving mod-
ifications needed to carry out the normal forms and holonomies arguments in the
case of leaf conjugacy.

Acknowledgments. We would like to thank Federico Rodriguez Hertz and Ralf
Spatzier for useful discussions.

2. Normal forms for contractions

In this section we give preliminaries on non-stationary normal forms for contrac-
tions. To make the presentation less technical, we formulate the results only for
perturbations of linear maps. This is sufficient for our purposes.

Let f be a homeomorphism of a compact connected manifold (or a compact metric
space)M. Let E =M×Rk be a vector bundle and let U ⊂ E be a neighborhood of
the zero section. We will consider a Cr extension F of f , that is, a map F : U → E
that projects to f , preserves the zero section, and such that the corresponding fiber
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maps Fx : Ux → Ef(x) are Cr and depend continuously on x in Cr topology. We will
assume that the derivative of F at the zero section is sufficiently C0 close on M to
a constant linear contraction, that is, D0Fx is close uniformly in x to a fixed linear
map A ∈ GL(k,R) with ‖A‖ < 1.

For any such matrix A there exists a finite dimensional Lie group PA with respect
to composition which consists of certain polynomial maps P : Rk → Rk with P (0) =
0 and invertible derivative at 0. The elements of PA are so called sub-resonance
generated polynomials. This group is determined by the (ratios of) logarithms χ1 <
· · · < χ` < 0 of absolute values of eigenvalues of A and by the corresponding invariant
subspaces. The degrees of these polynomials are bounded above by d(A) = χ1/χ`,
which yields that this group is finite dimensional. A precise definition of PA can be
found in [GuKt98, Gu02], but it does not play a role in this paper.

The following theorem was established in [GuKt98, Gu02] for r ∈ N ∪ {∞}, in
[KS17] for any r in nonuniformly hyperbolic setting, and in [K] for this setting.

Theorem 2.1 (Normal forms for contracting extensions). Let A ∈ GL(k,R) with
‖A‖ < 1, let ε > 0 and r ∈ [d(A) + ε,∞]. Let F : U → E be a Cr extension of f
whose derivative at the zero section is sufficiently C0-close to A.

Then there exist a neighborhood V of the zero section and a family {Φx}x∈M of Cr

diffeomorphisms Φx : Vx → Ex, satisfying Φx(0) = 0 and D0Φx = Id and depending
continuously on x in the Cr topology, which conjugate F to a polynomial extension
P , i.e., for all x ∈M,

(2.1) Φf(x) ◦ Fx = Px ◦ Φx, where Px ∈ PA.

Moreover, let g : M → M be a homeomorphism commuting with f and let
G : U → E be a Cd(A)+ε extension of g preserving the zero section and commuting
with F . Then for all x ∈M,

(2.2) Φg(x) ◦Gx ◦ Φ−1
x ∈ PA.

Remark 2.2 (Global version). Suppose that F : E → E is a globally defined ex-
tension which satisfies the assumptions of Theorem 2.1 and either contracts fibers
or, more generally, satisfies the property that for any compact set K ⊂ E and
any neighborhood V of the zero section we have F n(K) ⊂ V for all sufficiently
large n. Then the family {Φx}x∈M can be uniquely extended “by invariance” Φx =
(P n

x )−1 ◦ Φfn(x) ◦ F n
x to the family of global Cr diffeomorphisms Φx : Ex → Ex sat-

isfying (2.1). Moreover, if G is another extension which commutes with F , then it
satisfies (2.2) globally.

These results can be applied in the context of foliations as follows. Let f be a
diffeomorphism of a compact connected manifold M, and let W be an f -invariant
continuous foliation of M with uniformly C∞ leaves. The latter means that all
leaves are C∞ submanifolds and all their derivatives are continuous on M.
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Suppose that f contractsW and that the derivative Df |TW , as a linear extension
on E = TW , is close to a constant A. Restricting f to the leaves ofW and identifying
locallyWx =W(x) with TxW , we obtain a corresponding non-linear extension F as
in Theorem 2.1 and hence a family {Φx}x∈M of local normal form coordinates, Then,
as in Remark 2.2, they can be extended to global diffeomorphisms Φx : Wx → Ex
satisfying (2.1). The important new statements in this setting describing dependence
along the leaves, parts (2) and (3) in the next theorem, were established in [KS16].

Theorem 2.3 (Normal forms for contracting foliations, [KS16]). Let f be a C∞

diffeomorphism of a smooth compact connected manifold M, and let W be an f -
invariant topological foliation of M with uniformly C∞ leaves. Suppose that W
is contracted by f , and that the linear extension Df |TW is close to a constant A
as in Theorem 2.1. Then there exists a family {Φx}x∈M of C∞ diffeomorphisms
Φx :Wx → Ex = TxW such that for each x ∈M,

Px = Φf(x) ◦ f ◦ Φ−1
x : Ex → Ef(x) is in PA.

The family {Φx}x∈M has the following properties:

(1) Φx(x) = 0 and DxΦx is the identity map for each x ∈M;
(2) Φx depends continuously on x ∈M in C∞ topology and smoothly on x along

the leaves of W;
(3) For any x ∈ M and y ∈ Wx, the map Φy ◦ Φ−1

x : Ex → Ey is a composition
of a sub-resonance generated polynomial in PA with a translation;

(4) If g is a homeomorphism of M which commutes with f , preserves W, and
is Cd(A)+ε along the leaves of W, then for each x ∈M

Qx = Φf(x) ◦ g ◦ Φ−1
x : Ex → Eg(x) is in PA.

Another way to interpret (3) is to view Φx as a coordinate chart onWx, identifying
it with Ex, and in particular identifying Ey = TyWx with TΦx(y)Ex by DyΦx. In
this coordinate chart, (3) yields that all transition maps Φy ◦ Φ−1

x for y ∈ Wx are
in the group generated by the translations of Ex and the sub-resonance generated
polynomials, which is isomorphic to the Lie group P̄A generated by PA and the
translations of Rk. Clearly, this group is also finite dimensional.

3. Proof of Theorem 1.3

By standard considerations we may assume that h is homotopic to idTd . Indeed,
the induced map h∗ : Zd → Zd on the first homology group of Td is given by a matrix
C ∈ GL(n,Z), which defines an automorphism of Td. Replacing f by C ◦ f ◦ C−1

and h by h ◦ C−1, we may assume that h∗ = id, i.e., h is homotopic to the identity
map. Note that h does not have to be C0 close to identity.
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3.1. Outline of the proof. We denote the stable, unstable, and center sub-bundles
for L by Es, Eu, Ec, and the ones for f by Es, Eu, Ec. Similarly, we use W and
W for the corresponding foliations for L and for f . Lemma 3.1 below shows that
the conjugacy h respects the foliations, so essentially we study its smoothness by
restricting it toWs,Wu, andWc. The first part of the proof, Section 3.2, is showing
smoothness along the stable and unstable foliations using normal forms and center
holonomies.

The second part of the proof is to establish uniform smoothness of h along the
center foliation. We first do it for the stable and unstable components of h in Sec-
tion 3.4, and then global smoothness of the stable and unstable components follows
by the standard application of Journé’s Lemma [J88]. Finally, we use a different
argument to establish global smoothness of the center component in Section 3.5.

The following lemma has a rather standard proof and we include it for the sake
of completeness.

Lemma 3.1. Let L be a partially hyperbolic toral automorphism and let f be a dy-
namically coherent partially hyperbolic toral diffeomorphism topologically conjugate
to L by a homeomorphism h. Then h(W∗) = W ∗ for ∗ = s, u, c, cs, cu.

Proof. We show that center unstable leaves for f are mapped to those for L. With
respect to a suitable metric, L does not increase distances along W cs, that is,
dist(Lnx, Lny) ≤ dist(x, y) for any y ∈ W cs(x) and n ∈ N. Then h−1(y) will remain
close to h−1(x) under forward iterates of f . More precisely, for any ε > 0 there is
δ > 0 such that dist(fn(h−1(x)), fn(h−1(y))) ≤ ε for any n ∈ N and y ∈ W cs(x)
with dist(x, y) < δ. If ε is sufficiently small, this implies that h−1(y) ∈ Wcs(h−1(x)),
as otherwise they would separate exponentially along the unstable direction until
reaching a “moderate” distance > ε. By connectedness, all points of W cs(x) must be
mapped to the same center stable leaf of f , so we get h−1(W cs(x)) ⊂ Wcs(h−1(x)).
The equality follows from h being a homeomorphism. Applying the Invariance of
Domain Theorem to h−1 from a small ball in W cs(x) to Wcs(h−1(x)), we conclude
that h is a local homeomorphism between center stable leaves of f and L on small
balls of fixed size. By connectedness, all points of Wcs(h−1(x)) must come from the
same center stable leaf of L.

Similarly, Wcu is mapped to W cu, and it follows that Wc is mapped to W c as the
intersection of Wcs and Wcu.

We also have Ws is mapped to W s, and similarly for Wu and W u. Indeed if
y ∈ Ws(x) then d(fnx, fny)→ 0 and hence d(Lnh(x), Lnh(y))→ 0. It follows that
h(y) ∈ W s(h(x)) and so h(Ws(x)) ⊂ W s(h(x)). The equality again follows since h
is a homeomorphism. �

3.2. Smoothness of the conjugacy along the stable leaves. Since f is a small
perturbation of L, Theorem 2.3 applies and yields existence of the normal forms on
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Ws and Wu corresponding to the groups of sub-resonance generated polynomials
Ps = PL|Es and Pu = PL|Eu , respectively.

Now we consider the holonomies H = Hc of Wc inside Wcs, that is, the maps

Hx,y :Ws(x)→Ws(y) given by Hx,y(z) =Wc(z) ∩Ws(y).

Since the topological conjugacy h maps stable leaves to stable leaves and center
leaves to center leaves, the intersection consists of exactly one point, just as the corre-
sponding intersection for L does. Furthermore, the corresponding linear holonomies
H for L are the translations along W c: if y ∈ W c(x) then Hx,y(z) = z + (y − x),
and h conjugates H and H as follows

Hh(x), h(y) = h ◦ Hx,y ◦ h−1.

We conclude that H is globally defined on the leaves ofWs and is as smooth asWc.
We fix a pair of complex conjugate eigenvalues of L of absolute value 1 and denote

by V the corresponding invariant 2-dimensional subspace of Ec. We will now show
that holonomies H which are conjugate to translations in V preserve normal forms
on Ws.

Proposition 3.2. For each x ∈ Td and y ∈ Wc(x) with h(x) − h(y) ∈ V , the
center holonomy Hx,y : Ws(x) → Ws(y) preserves normal forms on Ws, that is,
Φy ◦ Hx,y ◦ Φ−1

x : Esx → Esy is a sub-resonance generated polynomial in Ps.

Remark 3.3. We will later extend this result in Proposition 5.1, which implies that
all center holonomies preserve normal forms on Ws. Using this we can replace the
assumption that L is irreducibile by the assumption that L is diagonalizable over C
and has dense center foliation. This yields a somewhat more general result given in
Remark 1.6

Proof. For any vector v ∈ V , the translation Hv(x) = x + v, x ∈ Td, is a globally
defined map whose restriction to any stable leaf is a center holonomy for L. While L
andHv do not commute, we have L(Hv(x)) = Lx+Rv, where the restrictionR = L|V
is a linear map conjugate to the rotation by some angle 2πθ. We will denote by Rt

the corresponding conjugate of the rotation by the angle 2πθt, for which R1/θ = Id.
Therefore, in order to apply Theorem 2.3, we pass to the suspension flow and use
time-1/θ map. The argument below is inspired by the one in [FKSp11].

We consider the mapping tori

Mf = Td × [0, 1] / (x, 1) ∼ (f(x), 0) and ML = Td × [0, 1] / (x, 1) ∼ (L(x), 0)

and the corresponding suspension flows {f s} and {Ls} given by (x, t) 7→ (x, t + s).

Then h induces the conjugacy h̃ : Mf →ML given by (x, t) 7→ (h(x), t) between the
suspension flows. We also consider the map Tv : Td × R→ Td × R given by

Tv(x, t) = (x+R−tv, t)
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and its projection H̃v : ML →ML to ML. The translation Hv embeds as t = 0 level
of the map H̃v. The projection H̃v is well-defined since

Tv(x, 1) = (x+R−1v, 1) is identified with

Tv(Lx, 0) = (Lx+ v, 0) = (Lx+ LR−1v), 0) = (L(x+R−1v), 0).

We note that Tv commutes with the map (x, t) 7→ (x, t + 1/θ) on Td × R. Indeed,
as R1/θ = Id we obtain

Tv(x, t+ 1/θ) = (x+R−t+1/θv, t+ 1/θ) = (x+R−tv, t+ 1/θ).

It follows that H̃v commutes with time-1/θ map L1/θ, as the projections to ML.

Since f is a small perturbation of L, Theorem 2.3 applies to the time-1/θ map of
the suspension flow {f s} and yields existence of the normal form coordinates {Φx}
on its stable foliation W̃s in Mf . In fact, the corresponding groups of sub-resonance
generated polynomials Ps = PL|Es are the same for all t.

For any v ∈ V , we have that the map g = h̃−1 ◦ H̃v ◦ h̃ : Mf → Mf is a

holonomy map of the lifted center foliation W̃c, and hence is Cr along the leaves.
Since H̃v commutes with L1/θ we obtain that g commutes with f 1/θ. Thus part
(4) of Theorem 2.3 applies and we conclude that Φg(x) ◦ g ◦ Φ−1

x : Ẽsx → Ẽsg(x) is a
sub-resonance generated polynomial. In particular, this holds at the level t = 0 of
Mf where g coincides with a holonomy map of Wc on Td. Moreover, any holonomy

map Hx,y as in the statement is given by h̃−1 ◦ H̃v ◦ h̃ for some v ∈ V . Thus we
conclude that Φy ◦ Hx,y ◦ Φ−1

x : Esx → Esy is a sub-resonance generated polynomial
map. �

We fix arbitrary x ∈ Td and y ∈ Ws(x). Since L is irreducible and V is L-
invariant, the linear foliation of planes parallel to V has dense leaves in Td. Hence
there exists a sequence of vectors vn ∈ V such that h(x) + vn converges to h(y). De-
noting yn = h−1(h(x) + vn) we obtain a sequence of points yn ∈ Wc(x) converging
to y so that Proposition 3.2 applies to holonomies Hx,yn : Ws(x) → Ws(yn). The
corresponding linear holonomies Hh(x), h(yn) = Hvn for L converge in C0 to the trans-
lation Hv in W s(h(x)) by the vector v = h(y) − h(x). Hence the holonomies Hx,yn

converge in C0 norm to some map Hx,y : Ws(x) → Ws(y), which is the conjugate
by h of this linear translation.

By Proposition 3.2, Hx,yn is a sub-resonance generated polynomial map Pn in
normal form coordinates, i.e.

Pn = Φyn ◦ Hx,yn ◦ Φ−1
x : Esx → Esyn .

Since the normal form coordinates Φy depend continuously on y, the maps Pn con-
verge in C0 to the map

P = Φy ◦ Hx,y ◦ Φ−1
x : Esx → Esy ,
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which is also a sub-resonance generated polynomial. Using (3) of Theorem 2.3 and
identifying Ws(x) with Esx by the C∞ coordinate map Φx, we see as in the remark
after Theorem 2.3 that P is in the Lie group P̄x generated by the translations of Esx
and the sub-resonance generated polynomials, which is isomorphic to the Lie group
P̄A generated by PA and the translations of Rk.

Thus h conjugates the action of Es = Rk by translations of W s(h(x)) with the
corresponding continuous action of Rk by elements of the Lie group P̄x of C∞ poly-
nomial diffeomorphisms ofWs(x). This conjugacy defines the continuous homomor-
phism

ηx : Es → P̄x given by ηx(v) = h−1 ◦Hv ◦ h.

It is a classical result that ηx is automatically a C∞ homomorphism, see for example
[Ha, Corollary 3.50]. Since ηx determines the conjugacy along the leaf by

h−1(h(x) + v) = ηx(v)(x),

we conclude that h−1 is a C∞ diffeomorphism between W s(h(x)) and Ws(x), and
hence h is also C∞ along Ws(x).

Since the normal form coordinates Φx, as well as holonomies and their limits,
depend continuously on x, the constructed continuous action on Ws(x) and the
corresponding homomorphism ηx also depend continuously on x. This implies that
ηx depend continuously on x in C∞ topology, for example because it is determined
by the corresponding linear homomorphism of the Lie algebras. So we conclude that
h is uniformly C∞ along Ws.

A similar argument shows that h is uniformly C∞ along Wu.

Remark 3.4. The last part of the proof is similar to an argument pioneered by
Katok and Spatzier in [KtSp97] and used in other papers on higher rank actions. In
these arguments a continuous action by C∞ diffeomorphisms of Ws(x) is obtained.
The smoothness of this action, and hence of h, follows then from a more difficult
result [MZ74, Section 5.1, Corollary]. This argument, however, does not immediately
yield that h is uniformly C∞ along Ws. Our argument relies on the advanced results
on normal forms from [KS16] to show that all maps P are contained in a single Lie
group P̄x.

3.3. The conjugacy h is volume-preserving. We denote the Lebesgue measure
on Td by m and the f -invariant volume by µ. We will show that h∗(µ) = m.

We denote the Lyapunov exponents of f with respect to µ by λf , and the Lyapunov
exponents of L by λL. Since Df |Eu is conjugate to L|Eu by the derivative of h along
Wu, the Lyapunov exponents of f along Eu with respect to µ are equal to the
unstable Lyapunov exponents of L. Since f and L are topologically conjugate,
they have the same topological entropy. Combining these observations with Pesin’s
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formula for the metric entropy, see for example [BP, Theorem 10.4.1], we obtain

htop(f) ≥ hµ(f) =
∑
λf>0

λf ≥
∑

λfon Eu
λf =

∑
λL>0

λL = hm(L) = htop(L) = htop(f).

Therefore, htop(f) = hµ(f), that is, µ is a measure of maximal entropy for f . Since
h−1 is an isomorphism of measure preserving systems (f, h−1

∗ (m)) and (L,m), we
see that hh−1

∗ (m)(f) = hm(L). Hence h−1
∗ (m) is also a measure of maximal entropy

for f , and by its uniqueness [B67] we conclude that h∗(µ) = m.

3.4. Global smoothness of the stable and unstable components. We already
proved that h is uniformly C∞ along Ws and Wu. To show global smoothness of
h we now study its regularity along Wc. For this we will decompose h into stable,
unstable, and center components and consider them separately using their series
representations. In this section we will obtain uniform smoothness along Wc of
the stable and unstable components and thus establish their global smoothness by
Journé’s Lemma. For the center component, in the next section, we will use a differ-
ent argument based on exponential mixing and a regularity result from [FKSp13].

Recall that h ◦ f = L ◦ h. We denote by f̄ and h̄ the lifts of f and h to Rd which
are compatible with the standard lift of L so that we have h̄ ◦ f̄ = L ◦ h̄. Also recall
that h is homotopic to the identity and f is homotopic to L. Hence we can write

h̄ = Id + H̄ and f̄ = L+ F̄ ,

where H̄, F̄ : Rd → Rd are Zd-periodic, and hence can be viewed as functions H and
F from Td to Rd. Then the commutation relation

(Id + H̄) ◦ (L+ F̄ ) = L ◦ (Id + H̄) yields H̄ = L−1(H̄ ◦ f̄) + L−1F̄ .

It is easy to check that the latter projects to the torus as the following equation for
Rd-valued functions on Td

H = L−1(H ◦ f) +G, where G = L−1F.

Using the L-invariant splitting Rd = Eu ⊕ Ec ⊕ Es we define the projections H∗
and G∗ of H and G to E∗, where ∗ = s, u, c, and obtain

(3.1) H∗ = L−1
∗ (H∗ ◦ f) +G∗, where L∗ = L|E∗ .

Thus H∗ is a fixed point of the affine operator

(3.2) T∗(ψ) = L−1
∗ (ψ ◦ f) +G∗

with the inverse T−1
∗ (φ) = L∗ (φ ◦ f−1)− L∗ (G∗ ◦ f−1).

Since ‖L−1
u ‖ < 1, the operator Tu is a contraction on the space C0(Td, Eu), and

thus Hu is its unique fixed point

(3.3) Hu = lim
k→∞

T ku (0) =
∞∑
k=0

L−ku (Gu ◦ fk).
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Similarly, T−1
s is a contraction on C0(Td, Es) and Hs is its unique fixed point

(3.4) Hs = lim
k→∞

T−ks (0) = −
∞∑
k=1

Lks(Gs ◦ f−k).

Our goal now is to show that Hc, Hu, and Hs are C∞, which would yield that h
is C∞. We already know that h is uniformly C∞ along Ws and Wu, and hence so
are Hc, Hu, and Hs. Thus it remains to study the derivatives for each of these maps
along Wc.

We will now prove that the derivatives of Hu of any order along Wc exist and are
continuous functions on Td by term-wise differentiation of (3.3), and thus we will
show that Hu is uniformly C∞ along Wc.

First we observe that the Lyapunov exponents of ‖Df |Ec‖ are zero with respect to
any f -invariant measure. Indeed, a non-zero Lyapunov exponent implies exponential
expansion/contraction by f inside the leaves of Wc, more precisely, existence of
x ∈ Td and y ∈ Wc(x) such that dist(fnx, fny) decays exponentially as n goes to
∞ or to −∞. Since conjugacy h is Hölder this yields similar exponential decay of
dist(Lnh(x), Lnh(y)), which is impossible as h(y) ∈ W c(h(x)).

The fact that the Lyapunov exponents of ‖Df |Ec‖ are zero with respect to any
f -invariant measure is well-known to imply that ‖Dfn|Ec‖ grows sub-exponentially,
that is, for any ε > 0 there is Cε such that

(3.5) ‖Dfn|Ec‖ ≤ Cε e
εn for all n ∈ N,

see e.g. [Schr98]. It follows that the norms of all higher derivatives also grow sub-
exponentially, see e.g. [dlLW10, Lemma 5.5]: for each m and δ > 0 there exists a
constant Kδ,` such that

(3.6) ‖fn‖C`Wc ≤ Kδ,` e
nδ for all n ∈ N,

where ‖g‖C`Wc denotes the supremum of all derivatives of g of orders up to ` along

the foliation Wc.
Since ‖L−1

u ‖ < 1, the above estimate yields that term-wise differentiation of any
order of (3.3) gives an exponentially converging series. Hence the derivatives of Hu

of any order along Wc are continuous functions on Td, that is Hu is uniformly C∞

along Wc. We have already established that Hu is uniformly C∞ along Wu and
Ws, and so we conclude that Hu is C∞ on Td by Journé’s lemma [J88]. A similar
argument using differentiation of (3.4) shows that Hs is C∞ on Td.

We remark that term-wise differentiation can be used to establish smoothness of
Hu and Hc along Ws and of Hs and Hc along Wu, but not of Hu along Wu or Hs

along Ws.

3.5. Global smoothness of the center component. In this section we complete
the proof of Theorem 1.3 by establishing global smoothness of Hc. While Hc is a
fixed point of the operator Tc given by (3.2), Tc is not a contraction on C0(Td, Ec).
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We will show, however, that Hc can be expressed by a series similarly to Hu and Hs

in the sense of distributions

(3.7) Hc =
∞∑
k=0

L−kc (Gc ◦ fk).

More precisely, we consider the distribution space D of Ec-valued functionals ω on
the space of C∞ test functions η : Td → R with zero average with the vector-valued
pairing

〈ω, η〉 =

∫
Td
η(x)ω(x) dµ(x).

We also fix a norm |.| on Ec to estimate the magnitude. We need the space of
C∞ test functions only for the formal definition of distributional derivatives. All
estimates in the proof will be done for a Hölder continuous η and all distributions
will be shown to be defined on the space of Hölder continuous test function.

To verify (3.7) we iterate equation (3.1), Hc = L−1
c (Hc ◦ f) +Gc, and get that for

any j ∈ N,

(3.8) Hc =

j−1∑
k=0

L−kc (Gc ◦ fk) + L−jc (Hc ◦ f j).

Since Lc is conjugate to an orthogonal matrix, ‖L−jc ‖ is bounded uniformly in j.
Since (f, µ) is mixing, as isomorphic to (L,m), we can estimate the last term in
(3.8) as

|〈L−jc (Hc ◦ f j), η〉| = |L−jc 〈Hc ◦ f j, η〉| ≤ ‖L−jc ‖ · |〈Hc ◦ f j, η〉| → 0

as j →∞ for any Hölder or L2 function η with 0 average, and we conclude that

(3.9) 〈Hc, η〉 = 〈
∞∑
k=0

L−kc (Gc ◦ fk), η 〉.

Now we will prove that Hc is C∞ on Td using a regularity result from [FKSp13,
Corollary 8.5], which yields that it suffices to show that the derivatives of Hc of any
order alongWc,Ws, andWu are distributions dual to the space of Hölder functions,
i.e., their norms can be estimated by the Hölder norm of a test function. Recall that
the derivatives of Hc of any order along Ws and Wu are continuous functions by
uniform smoothness of h alongWs andWu established in Section 3.2. This can also
be seen by term-wise differentiation of the series for Hc. To complete the proof of
smoothness of Hc, we will now show that the derivatives of Hc of any order along
Wc are distributions dual to Hölder functions. We use the following result which
says that L has exponential mixing on Hölder functions.

[L82, Theorem 6], [GoSp14, Theorem 1.1] Let L be an ergodic automorphism of a
torus, or more generally of a compact nilmanifold X. Then for any θ ∈ (0, 1] there
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exists ρ = ρ(θ) ∈ (0, 1) such that for all g0, g1 ∈ Cθ(X) and n ∈ N,∫
X

g0(x)g1(Ln(x)) dm(x) =

(∫
X

g0 dm

)(∫
X

g1 dm

)
+O(ρn‖g0‖Cθ‖g1‖Cθ).

Since the bi-Hölder conjugacy h maps the volume µ to the Lebesgue measure m and
preserves the class of Hölder functions, the same holds for (f, µ) in place of (L,m).

We fix ` ∈ N and for a smooth function g on Td consider its partial derivative
D`
cg of order ` along Wc. We will use the same notation for distributional deriva-

tives along Wc (see [FKSp13, Section 8] for a detailed description of distributional
derivatives in the context of foliations). Using equation (3.9) we obtain the formula
for distributional derivative of Hc,

(3.10) 〈D`
cHc, η〉 = 〈

∞∑
k=0

D`
c(L
−k
c (Gc ◦ fk)), η 〉.

Since Gc and f are smooth, the terms D`
c(L
−k
c (Gc ◦ fk)) are continuous functions.

Now we estimate these pairings in terms of the Hölder norm of η.
We will use smooth approximations of η by convolutions with a smooth kernel

ηε = η ∗φε. More precisely, we fix a smooth bump function φ supported on the unit
ball and define φε(x) = ε−dφ(x/ε), so that we have

φε ≥ 0,

∫
Td
φε = 1, ‖φε‖C` = ε−(d+`)‖φ‖C` .

Then for any 0 < θ ≤ 1 and ` ∈ N we have the standard estimates of the norms for
any θ-Hölder function η,

(3.11)
‖ηε − η‖C0 ≤ εθ‖η‖θ and

‖ηε‖C` ≤ c` ε
−d−`‖η‖0 for ` ∈ N,

where c` is a constant depending only on `.
We split η as ηε + (η − ηε) and estimate the corresponding pairings.

|〈D`
cL
−k
c (Gc ◦ fk), ηε〉| ≤ ‖L−kc ‖ · |〈D`

c(Gc ◦ fk), ηε〉| =
= ‖L−kc ‖ · |〈Gc ◦ fk, D`

cηε〉| .

Since ‖D`
cηε‖θ ≤ ‖D`

cηε‖1 ≤ ‖ηε‖C`+1 , using the exponential mixing and (3.11) we
can estimate

|〈Gc ◦ fk, η`,cε 〉| ≤ K1 ρ
k ‖Gc‖θ ‖D`

cηε‖θ ≤ K2 ρ
kε−(d+`+1)‖Gc‖θ ‖η‖0 .

Since ‖L−kc ‖ is bounded we conclude that

(3.12) |〈L−kc (Gc ◦ fk)`,c, ηε〉| ≤ K3 ρ
kε−(d+`+1)‖Gc‖θ ‖η‖0 .
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Now we estimate the pairings in (3.10) with η− ηε. We use an estimate on norms
of compositions of C` functions

‖h ◦ g‖C` ≤M` ‖h‖C`(1 + ‖g‖C`)`,
which follows, for example, from Proposition 5.5 in [dlLO98]. Thus we have

|〈D`
cL
−k
c (Gc ◦ fk), (η − ηε)〉| ≤ ‖L−kc D`

c(Gc ◦ fk)‖0 · ‖(η − ηε)‖0 ≤
≤ ‖L−kc ‖ · ‖Gc ◦ fk‖C`Wc · ε

θ‖η‖θ ≤ K5 ‖Gc‖C` (1 + ‖fk‖C`Wc )
` · εθ‖η‖θ.

Now using (3.6) we obtain

(3.13)
|〈L−kc (Gc ◦ fk)`,c, (η − ηε)〉| ≤ K6 e

`kδ · εθ · ‖Gc‖C` · ‖η‖θ =

= K6 ξ
k ‖Gc‖C` · ‖η‖θ, where ξ = e`δεθ/k.

We choose ε = ε(k) = ρk/(2(d+`+1)) so that ρkε−(d+`+1) = ρk/2 to obtain exponential
decay in (3.12). Then we take δ > 0 sufficiently small so that

ξ = e`δρθ/(2(d+`+1)) < 1,

which ensures exponential decay in (3.13). Noting that ρ1/2 < ξ < 1, we combine
(3.12) and (3.13) to get

|〈L−kc (Gc ◦ fk)`,c, η〉| ≤ K7 ξ
k · ‖Gc‖C` ‖η‖θ.

Thus, for any θ and derivative D`
c, we obtain exponential convergence in (3.10) and

conclude that |〈D`
cHc, η〉| ≤ C‖η‖θ. Therefore D`

cHc extends to a functional on
the space of θ-Hölder functions. This concludes the argument that Hc is C∞ and
completes the proof of Theorem 1.3.

4. Proofs of Corollary 1.5, Theorem 1.7, and Corollary 1.8

4.1. Proof of Corollary 1.5. We will verify that Wc is sufficiently smooth, in
fact that Ec is C∞. The latter is equivalent to Es ⊕ Eu being C∞ since Ec is the
symplectic orthogonal to Es ⊕ Eu. Indeed, if u ∈ Ec and v ∈ Es then by invariance
of the symplectic form ω we have that

|ωx(v, u)| = |ωfnx(Dxf
n(v), Dxf

n(u))| ≤ C‖Dxf
n(v)‖ · ‖Dxf

n(u)‖ → 0

as n→∞, and so ωx(v, u) = 0. Similarly ωx(v, u) = 0 for any u ∈ Ec and v ∈ Eu.
Now we show that Es ⊕ Eu is C∞. Since f is topologically conjugate to L, the

foliationsWu andWs are topologically jointly integrable in the sense that there is a
continuous foliationW =Ws+u of dimension dimWs+dimWu which is sub-foliated
by Wu and Ws. First we note that the leaves of Ws+u are uniformly C∞ by the
following lemma.

Lemma 4.1. [KS06, Lemma 4.1] Let W1 and W2 be foliations with uniformly C∞

leaves. Suppose that W1 and W2 are topologically jointly integrable to a continuous
foliation W. Then W has uniformly C∞ leaves.
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Now to prove that Ws+u, and hence Es ⊕ Eu, is C∞ it suffices to show that the
holonomies of Ws+u between leaves of Wc are C∞. By the dynamical coherence
of f , the holonomy of Ws+u between the center leaves is smooth as a composition
of holonomies of Wu inside Wcu and of Ws inside Wcs. We claim that the latter,
and similarly the former, holonomies are C∞, since Ws is a C∞ foliation inside the
leaves ofWcs. For this we note that, as we already observed in the proof of Theorem
1.3, Df |Ec has sub-exponential growth, as the exponents of f along Ec are all zero.
This implies that f is so called strongly r-bunched for any r and thus the leaves of
Wcs are C∞ [PSW97]. It also implies that Df |Ecs has sub-exponential growth and
so applying the Cr Section Theorem [HPS77, Theorem 3.2] as for example in [KS07,
Theorem 3.7 and Proposition 3.9] we obtain thatWs is C∞ along the leaves ofWcs.

4.2. Proof of Theorem 1.7. It is clear that smooth conjugacy implies (1)-(5).
Then it suffices to show that all other items imply (4) and that the topological
conjugacy in (4) is bi-Hölder, so that Theorem 1.3 applies and yields smoothness.

The implication (1) =⇒ (2) is clear and the implication (2) =⇒ (3) follows from
the next result by Avila and Viana:

[AV10, Theorem 8.1] Let L be as in Theorem 1.7. Then there exists a neighborhood
U of L in the space of CN volume preserving diffeomorphisms of Td such that if
f ∈ U is accessible then its center Lyapunov exponents are distinct.

The (topological) joint integrability of Ws ⊕ Wu means that the accessibility
classes, i.e., the sets of points that can be connected to each other by an su-path,
are the leaves ofWs+u, thus (5) =⇒ (3). The implication (3) =⇒ (4) was established
in [RH05, Section 6]. For a perturbation f which is not accessible, it was proved
in [RH05, Section 6] (cf. [AV10, Remark 8.3]) that f and L are conjugate by a
bi-Hölder homeomorphism h. This completes the proof of Theorem 1.7.

4.3. Proof of Corollary 1.8. Combining the above proof of Theorem 1.7 with
Corollary 1.5 we conclude that smooth conjugacy in this case is equivalent to (1)-
(5). A smooth conjugacy also clearly implies (0) and (6).

For a symplectic f the Lyapunov spectrum is a symmetric subset of R, that is,
the Lyapunov exponents come in pairs λ,−λ. Indeed, let ω be the invariant sym-
plectic form. Since ω is non-degenerate, each Lyapunov space E i is not symplectic
orthogonal to at least one Lyapunov space E j. Then for suitable vectors vi and vj
in these spaces we have by invariance that

0 6= ωx(vi, vj) = ωfnx(Dxf
n(vi), Dxf

n(vj)).

This implies λfi +λfj = 0 as otherwise the right hand side must go to 0 under forward
or backward iterates.

Since Ec is symplectic orthogonal to Es⊕Eu, the argument above also shows that
the center exponents are of the form λ,−λ, and thus (0) =⇒ (1).
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Finally, (6) implies (5) or (0) by a result of Hammerlindl [H11, Theorem 1.1]: if
Es ⊕ Eu is C1 and not integrable, then a center exponent must be qual to the sum
of a stable one and an unstable one. We let

2ε = min
λi 6=±λj

| |λLi | − |λLj | | > 0.

If f is sufficiently C1 close to L then the similar minimum for f is at least ε while the
center exponents satisfy |λfc | < ε. Then, by the symmetry of Lyapunov spectrum,

the equation λfc = λfi + λfj can only hold in the case λi + λj = 0, yielding (0).
This completes the proof of Corollary 1.8.

5. Proof of Theorem 1.1

5.1. Outline of the proof. The main part of the proof is establishing smoothness
of the leaf conjugacy transversely to the center foliation. This is similar in spirit
to proving smoothness of the conjugacy along the stable and unstable foliations in
Section 3.2. However, in absence of a true conjugacy, the argument with holonomies
and normal forms becomes more difficult.

As before, we denote the stable, unstable, and center sub-bundles for L by Es,
Eu, Ec, and the ones for f by Es, Eu, Ec. Similarly, we use W and W for the
corresponding foliations for L and for f respectively.

We recall that by the structural stability of partially hyperbolic systems [HPS77,
Theorem 7.1] there exists a leaf conjugacy h, that is, a homeomorphism close to the
identity which maps center leaves to center leaves and conjugates f to L modulo
the center foliation. Further, it maps center-stable leaves to center-stables leaves
and center-unstable leaves to center-unstable leaves. Such a leaf conjugacy is not
unique and to establish global smoothness, we choose a specific h using the global
coordinates on Td. Denote by h̄ : Rd → Rd the lift of h to the universal cover,
where we have a direct splitting Rd = Es ⊕Ec ⊕Eu and hence we can use (s, c, u)-
coordinates

h̄(x) = h̄(xs, xc, xu) = (h̄s(x), h̄c(x), h̄u(x)).

In the notations h̄(x) = x + H̄(x) of Section 3.4 this corresponds to h̄∗(x) = x∗ +
H∗(x), ∗ = s, c, u. It well-known (and clear from the proof of [HPS77, Theorem
7.1]) that even though h is non unique, the coordinates h̄s and h̄u are, in fact,
unique. They are uniquely determined by (3.3) and (3.4). This property is known
as “uniqueness transverse to the center”. While h̄c is not unique, we can take
h̄c(x) = xc, which corresponds to setting H̄c = 0. This choice adjusts a given
leaf conjugacy only along W c, and hence the resulting h is also a leaf conjugacy,
provided that it is a homeomorphism. To show that h is injective we note that it
still maps different center leaves to different center leaves. Hence if h(x) = h(y),
then y ∈ Wc(x). Therefore hc(x) = hc(y) yields that x = y sinceWc(x) is transverse
to Es ⊕ Eu. Also h is surjective since it is homotopic to the identity. We conclude
that h is a homeomorphism and a leaf conjugacy.
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Note that h̄c is obviously smooth. Because h̄ sends center leaves to center leaves,
if x varies in Wc(x0) then h̄(x) varies in W c(h̄(x0)) and, hence, the coordinates h̄s
and h̄u do not change. In the same way, if x varies in Ws(x0) then h̄(x) varies in
W cs(h̄(x0)) and, hence, the coordinate h̄u does not change. And when x varies in
Wu(x0) the coordinate h̄s does not change. Hence, to prove that h is C∞ it suffices
to show that h̄s is uniformly C∞ along Ws. This is done in Section 5.2 below.
Similarly, h̄u is uniformly C∞ along Wu, which completes the proof.

5.2. Smoothness of hs along Ws. In this section we give modifications needed to
carry out the arguments from Section 3.2 in the case of leaf conjugacy. The main
part is to establish the following generalization of Proposition 3.2.

Proposition 5.1. Let L : Td → Td be a partially hyperbolic automorphism which
is diagonalizable over C. Let f : Td → Td be a sufficiently C1-small perturbation of
L. Let {Φx}x∈Td be normal form coordinates for f on Ws, as in Theorem 2.3. For
any x ∈ Td and y ∈ Wc(x) the center holonomy Hx,y : Ws(x) → Ws(y) preserves
normal forms, that is, the map

Φy ◦ Hx,y ◦ Φ−1
x : Esx → Esy is in PLs ,

the group of sub-resonance generated polynomial maps defined by Ls = L|Es.

Proof. As in the proof of Proposition 3.2, we consider the mapping tori and the
corresponding suspension flows f t and Lt. Then the leaf conjugacy h, which was
chosen in the previous subsection, induces the leaf conjugacy h̃ : Mf →ML between

the suspension flows given by h̃(x, t) = (h(x), t).
We recall that L is diagonalizable and all its eigenvalues on Ec have modulus 1.

Hence we can decompose Ec = ⊕Vj as the direct sum of eigenspaces corresponding
to eigenvalues 1 and −1 and of L-invariant subspaces corresponding to pairs of
complex eigenvalues e±2πiθj . We will consider center holonomies corresponding to
each of these subspaces separately. We fix one of the subspaces corresponding to a
complex pair and write V = Vj and θ = θj. The case when V is an eigenspace of 1
or −1 can be considered similarly using L2 in place of L1/θ.

For any v ∈ V we again consider the translation Hv(x) = x + v, x ∈ Td, which
embeds as t = 0 level of the map H̃v : ML → ML. The map H̃v commutes with
L1/θ, the time 1/θ map of the suspension flow. Since h is not a conjugacy, we will
first consider the normal forms for a different dynamics on Mf . Denoting

φt = h̃−1 ◦ Lt ◦ h̃ for t ∈ R,

we obtain a continuous flow on Mf . We fix v ∈ Ec and define the homeomorphism

g = gv = h̃−1 ◦ H̃v ◦ h̃
which again commutes with φ1/θ. However, φt and g may not preserve the foliation
W̃s. Since h is a leaf conjugacy, the homeomorphisms φt and g preserve foliations
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W̃c and W̃cs, and they differ from f t and from a center holonomy between strong
leaves respectively, by “adjusting along the center”. More precisely,

φt(x) ∈ W̃c(f t(x)) and g(x) ∈ W̃c(x).

Now we define smooth extensions F t and G of φt and g. They reflect the behavior
of f t and of the center holonomies between the corresponding strong stable leaves.
We fix x ∈Mf and for each t ∈ R we define

F t
x : W̃s(x)→ W̃s(φ(x)) as F t

x = Hφ(x) ◦ φt|W̃s(x),

where Hφ(x) is “holonomy projection” along W̃c inside the leaf of W̃cs, that is

Hx = Hcs
x : W̃cs(x)→ W̃s(x) given by Hx(z) = W̃c(z) ∩ W̃s(x).

Note that Hx is globally defined on W̃cs since the leaf conjugacy h maps the leaves
of W̃c and W̃cs to those of W̃ c and W̃ cs. Also, since φt(y) and f t(y) are on the same
leaf of W̃c, we can also express F t

x as

(5.1) F t
x = Hf t(x),φt(x) ◦ f t|W̃s(x) : W̃s(x)→ W̃s(φ(x)),

where Hx,y : W̃s(x) → W̃s(y) denotes the usual W̃c holonomy. Similarly, for any
x ∈Mf , we define

Gx : W̃s(x)→ W̃s(g(x)) as Gx = Hg(x) ◦ g|W̃s(x).

Since φ1/θ and g commute, it is clear from the definitions that the extensions also

commute: Gφ(x)◦F 1/θ
x = F

1/θ
g(x)◦Gx. Again, as g(y) ∈ W̃c(y) we see that Gx coincides

with the center holonomy

(5.2) Gx = Hx,g(x) : W̃s(x)→ W̃s(g(x)).

Since W̃c is a C∞ foliation, Hφ(x) and Hx,g(x) are C∞, and thus both F t
x and Gx are

C∞ diffeomorphisms.
Now we construct normal forms for the extension F t and show that G preserves

them. To apply Theorem 2.1, we locally identify W̃s(x) and Ẽsx and obtain the
corresponding smooth extensions F̄ t and Ḡ of φt and g, respectively, defined on a
neighborhood of the zero section in E = Ẽs. We claim that the derivative of F̄ t at
the zero section is a contraction which is close to the linear flow Lt, provided that
f is sufficiently C1 close to L. Indeed, differentiating (5.1) at x we obtain

D0F̄
t
x = DxF

t
x = Df t(x)Hf t(x),φt(x) ◦Df t|Ẽs(x).

If f is sufficiently C1 close to L then h is C0 close to the identity, and hence φt is C0

close to f t. Thus φt(x) is close to f t(x) and hence the derivative of the holonomy
Hf t(x),φt(x) is close to the identity. Thus D0F̄

t
x is close to Df t|Ẽs(x), which is close to

Lt. In particular, D0F̄
1 is close to L and, as F̄ t is C∞, we can now apply Theorem

2.1 with F = F 1 and A = Ls = L|Es to obtain a family of local normal form
coordinates Φ̄x for F̄ 1 on Ẽs.
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Since all maps F̄ t commute, the second part of Theorem 2.1 implies that Φ̄x are
also normal form coordinates for the whole one-parameter group {F̄ t}. Hence by
the identification we obtain local normal form coordinates Φx for F t on W̃s. Then
we can extend Φx, as in the Remark 2.2, to get global normal form coordinates on
the whole leaves Φx : W̃s

x → Ẽsx. Indeed, while F t
x may not be a global contraction,

for any bounded set B ⊂ W̃s
x, the set F n

x (B) will be in a small neighborhood of
φn(x) for all sufficiently large n, and hence we can define Φx on B by

Φx = (Pnx )−1 ◦ Φφn(x) ◦ F n
x .

Since the extension G is also C∞ and commutes with F 1/θ, the second part of
Theorem 2.1 implies that G preserves the normal form coordinates for F t on W̃s,
i.e., Φg(x) ◦Gx ◦Φ−1

x ∈ PLs , the sub-resonance group given by A = Ls. By (5.2), Gx

is the holonomy Hx,g(x) : W̃s(x)→ W̃s(g(x)) and we conclude that

Φg(x) ◦ Hx,g(x) ◦ Φ−1
x ∈ PLs .

Recall that Ec = ⊕Vj. The above conclusion holds for gv = h−1 ◦ H̃v ◦ h, where v
is any vector in any Vj. We decompose any vector w ∈ Ec as the sum w =

∑
vj and

note that the holonomy H̃w is the composition of the holonomies H̃vj . Therefore,

gw = h−1 ◦ H̃w ◦ h preserves normal forms as the corresponding composition of the
maps gvj . Since for any x ∈Mf and any y ∈ Wc(x) we can take w = h(y)− h(x) so

that gw(x) = y, we conclude that any center holonomy map Hx,y : W̃s(x)→ W̃s(y)
preserves normal forms.

Considering t = 0 level of the suspension Mf we obtain this result for Td: for any
x ∈ Td and any y ∈ Wc(x)

Φy ◦ Hx,y ◦ Φ−1
x : Esx → Esy is in PLs .

Finally, we note that by (5.1) we have F 1
x = Hf(x),φ(x) ◦ f |Ws(x). Since both F 1

x

and the holonomy are in PLs , we conclude that so is f |Ws(x). Therefore, {Φx}x∈Td
are normal form coordinates for f on Ws, as in Theorem 2.3. This completes the
proof of Proposition 5.1. �

Now we show that hs is uniformly C∞ along Ws. We fix a point x ∈ Td and
consider the map

ĥx :Ws(x)→ W s(h(x)) given by ĥx = Hc
h(x) ◦ h|Ws(x),

where Hc
h(x) is the linear projection inside W cs(h(x)) to W s(h(x)) along W c. We will

prove that ĥx is uniformly C∞. This will show that the component hs is uniformly
C∞ along the leaves of Ws, as it is easy to see that ĥx = hs|Ws(x) under the natural
identification of W s(h(x)) with Ec.

We fix y ∈ Ws(x) and take a sequence of points yn ∈ Wc(x) converging to y.
This can be done since the leaves of the linear foliation W c are dense in Td and
the fact that the leaf conjugacy h is a homeomorphism which sends Wc to W c. We
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consider holonomies Hx,yn :Ws(x)→Ws(yn) of Wc inside Wcs. We claim that the
holonomy maps Hx,yn converge in C0 to the map Hx,y : Ws(x) → Ws(y), which is

conjugate by ĥx to linear translation Hv̂ in W s(h(x)) by the vector

v̂ = ĥx(y)− ĥx(x) = ĥx(y)− h(x).

Indeed, since yn ∈ Wc(x) converge to y, h(yn) ∈ Wc(h(x)) converge to h(y).
The corresponding linear center holonomies Hh(x), h(yn) for L are translations Hvn

by the vectors vn = h(yn) − h(x) and thus converge in C0 to the translation
Hv : W s(h(x)) → W s(h(y)) by the vector v = h(y) − h(x). Composing with
the translation Hv̂−v, which is also a linear center holonomy, we see that

Hv̂−v ◦Hh(x), h(yn) converges to Hv̂ : W s(h(x))→ W s(h(x)) = W s(ĥx(y)),

and that the map

(ĥx)
−1 ◦Hv̂ ◦ ĥx :Ws(x)→Ws(x) =Ws(y)

is the limit Hx,y of the holonomies Hx,yn :Ws(x)→Ws(yn).

Once we have this convergence of Hx,yn to Hx,y and Proposition 5.1, we can use
the same normal form argument as in Section 3.2. Indeed, we again obtain that
Pn = Φyn ◦ Hx,yn ◦ Φ−1

x and their C0 limit P = Φy ◦ Hx,y ◦ Φ−1
x are sub-resonance

generated polynomials. Identifying Ws(x) with Esx by Φx we obtain that P is in the
Lie group P̄x generated by the translations of Esx and the sub-resonance generated

polynomials. Then ĥ defines the continuous homomorphisms

ηx : Es → P̄x given by ηx(v̂) = (ĥx)
−1 ◦Hv̂ ◦ ĥx,

which are C∞. This yields that ĥ−1
x and ĥx are C∞ diffeomorphisms that depend

continuously on x in C∞ topology.
This shows that hs is uniformly C∞ along Ws and completes the proof of Theo-

rem 1.1.
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Iberoamericana 4 (1988), no. 2, 187-193.

[K] B. Kalinin. Non-stationary normal forms for contracting extensions. To appear in vol-
ume “A Vision for Dynamics in the 21st Century.”

[KS06] B. Kalinin, V. Sadovskaya. Global Rigidity for TNS Anosov Zk Actions. Geometry and
Topology, 10 (2006), 929-954.

[KS07] B. Kalinin, V. Sadovskaya. On classification of resonance-free Anosov Zk actions. Michi-
gan Math. Journal, 55 (2007), no. 3, 651-670.

[KS16] B. Kalinin, V. Sadovskaya. Normal forms on contracting foliations: smoothness and
homogeneous structure. Geometriae Dedicata, Vol. 183 (2016), no. 1, 181-194.

[KS17] B. Kalinin, V. Sadovskaya. Normal forms for non-uniform contractions. Journal of
Modern Dynamics, vol. 11 (2017), 341-368.

[KtL91] A. Katok, J. Lewis. Local rigidity for certain groups of toral automorphisms. Israel J.
Math. 75 (1991), 203–241.

[KtSp97] A. Katok, R. Spatzier. Differential rigidity of Anosov actions of higher rank abelian
groups and algebraic lattice actions. Tr. Mat. Inst. Steklova 216 (1997), Din. Sist. i
Smezhnye Vopr., 292–319; translation in Proc. Steklov Inst. Math. 1997, no. 1 (216),
287-314.

[Kz71] Y. Katznelson. Ergodic automorphisms of Tn are Bernoulli shifts. Israel J. Math. 10
(1971), 186-195.

[L82] D. Lind. Dynamical properties of quasihyperbolic toral automorphisms. Ergodic Theory
Dynamical Systems, 2 (1982), no. 1, 49–68.

[M80] B. Marcus. A note on periodic points of toral automorphisms. Monatsh. Math. 89 (1980),
121-129.



CENTER FOLIATION RIGIDITY 24

[MZ74] D. Montgomery, L. Zippin. Topological transformation groups. Robert E. Krieger Pub-
lishing Co., Huntington, N.Y., (1974). MR0379739 Reprint of the 1955 original.

[O68] V. Oseledets. A multiplicative ergodic theorem. Liapunov characteristic numbers for
dynamical systems. Trans. Mosc. Math. Soc. 19 (1968), 197-221.
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