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Abstract. We consider Hölder continuous GL(2,R)-valued cocycles over a

transitive Anosov diffeomorphism. We give a complete classification up to
Hölder cohomology of cocycles with one Lyapunov exponent and of cocycles

that preserve two transverse Hölder continuous sub-bundles. We prove that
a measurable cohomology between two such cocycles is Hölder continuous.

We also show that conjugacy of periodic data for two such cocycles does not

always imply cohomology, but a slightly stronger assumption does. We describe
examples that indicate that our main results do not extend to general GL(2,R)-

valued cocycles.

1. Introduction. In this paper we study cohomology of GL(2,R)-valued cocycles
over a transitive Anosov diffeomorphism f of a compact manifold M. Let A be
Hölder continuous function fromM to a metric group G. The map A :M×Z→ G
defined by

A(x, 0) = eG, A(x, n) = A(fn−1x) · · ·A(x), and A(x,−n) = A(f−nx, n)−1

is called a G-valued cocycle over the Z-action generated by f . The function A(x) =
A(x, 1) is called the generator of A, and we will often refer to A as a cocycle.

Cocycles appear naturally in dynamical systems, and an important example is
given by the derivative cocycle. If the tangent bundle of M is trivial, i.e. TM =
M× Rm, then the differential df can be viewed as a cocycle

A(x, n) = dfnx ∈ GL(m,R) and A(x) = dfx.

More generally, one can consider the restriction of df to a Hölder continuous invari-
ant sub-bundle of TM, such as the stable or unstable sub-bundle. Hölder regularity
of the cocycles is natural in this context, and it is also necessary to develop a mean-
ingful theory, even in the case of G = R.

Definition 1.1. Cocycles A and B are (measurably, continuously) cohomologous if
there exists a (measurable, continuous) function C :M→ G such that

A(x, n) = C(fnx)B(x, n)C(x)−1 for all n ∈ Z and x ∈M, (1)
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equivalently, for the generators A and B of A and B respectively,

A(x) = C(fx)B(x)C(x)−1 for all x ∈M.

We refer to C as a conjugacy between A and B. It is also called a transfer map.

Cocycles over hyperbolic systems and their cohomology have been extensively
studied starting with the seminal work of A. Livšic [7, 8], and the research has been
focused on the following questions.

Question 1. Is every measurable solution C of (1) continuous?

Measurability should be understood with respect to a suitable measure, for ex-
ample the measure of maximal entropy or the invariant volume. Further, one can
ask whether a continuous solution is smooth if the system and the cocycles are.

Clearly, continuous cohomology of two cocycles implies conjugacy of their peri-
odic data. So it is natural to ask whether the converse it true.

Question 2. Suppose that whenever p = fnp, A(p, n) = C(p)B(p, n)C−1(p) for
some C(p) ∈ G. Does it follow that A and B are continuously cohomologous?

Without any assumptions on continuity of C(p) the answer is negative in gen-
eral. If C(p) is Hölder continuous, conjugating B by C reduces the question to the
following.

Question 3. Suppose that A(p, n) = B(p, n) whenever fnp = p. Does it follow that
A and B are continuously cohomologous?

If G is R or an abelian group, positive answers to all these questions where
given in [7, 8]. For abelian groups, Questions 2 and 3 are equivalent, moreover,
the analysis reduces to the case when B is the identity cocycle. Even for non-
abelian G, the case of B = eG has been studied most and by now is relatively
well understood. In Questions 2 and 3, the assumptions become A(p, n) = eG,
and for a Lie group G these questions where answered positively by B. Kalinin in
[3]. Question 1 remains open in full generality, but it has been answered positively
under additional assumptions. For example, M. Pollicott and C. P. Walkden in
[12] assumed certain pinching of the cocycle, and M. Nicol and M. Pollicott in [10]
assumed boundedness of the conjugacy.

For non-abelian G the question of cohomology of two arbitrary cocycles is much
more difficult. Positive answers to Questions 1 and 3 were given by W. Parry [11] for
compact G and, somewhat more generally, by K. Schmidt [13] when both cocycles
have “bounded distortion”. The non-compact case remains largely unexplored.
The only results so far have been negative. Cocycles which are measurably but not
continuously cohomologous were constructed in [12], and an example of cocycles
with conjugate periodic data that are not continuously cohomologous was given by
M. Guysinsky in [2]. In these examples both cocycles can be made arbitrarily close
to the identity, so no pinching can ensure positive results.

In this paper we go beyond the case of compact groups and consider G =
GL(2,R). We obtain positive results for two classes of cocycles. The first one
consists of cocycles which have only one Lyapunov exponent for each ergodic f -
invariant measure. Such cocycles can be identified by the periodic data: for every
periodic point p = fnp, the eigenvalues of the matrix A(p, n) are equal in modulus
[4]. We give a complete classification of these cocycles up to Hölder cohomology,
which shows that they can be viewed as either elliptic or parabolic. At the oppo-
site end of the spectrum is the class of cocycles which preserve a pair of Hölder
continuous transverse sub-bundles. It includes uniformly hyperbolic cocycles and,
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more generally, cocycles with dominated splitting. These cocycles are Hölder coho-
mologous to diagonal ones. Using the classification we obtain positive answers to
Questions 1 and 3 and give a complete analysis of Question 2. In particular, we
give an example of parabolic cocycles with C(p) uniformly bounded that are not
even measurably cohomologous.

The cocycles outside of these two classes can be viewed as non-uniformly hyper-
bolic. We revisit examples from [2, 12] that give negative answers to Questions 1 and
2 and indicate that continuous classification of such cocycles is unlikely. Question
3 for general GL(2,R)-valued cocycles remains open.

We would like to thank Boris Kalinin for helpful discussions.

2. Statement of results.

2.1. Assumptions. In this paper, M is a compact connected Riemannian mani-
fold, f : M → M is a transitive C2 Anosov diffeomorphism, and E = M× R2

is a trivial vector bundle with two-dimensional fibers. Sub-bundles of E are under-
stood to be one-dimensional. We consider orientation-preserving Hölder continuous
cocycles A :M→ GL(2,R) over f .

Measurability is understood with respect to a mixing f -invariant probability mea-
sure on M with full support and local product structure, for example the measure of
maximal entropy. Measurable objects are assumed to be defined almost everywhere
with respect to such a measure. When we say that a measurable object is continuous,
we mean that it coincides almost everywhere with a continuous one.

First we consider cocycles satisfying the following condition, which is equivalent
to having only one Lyapunov exponent for each ergodic f -invariant measure [4].

Condition 2.1. For each periodic point p = fnp in M, the eigenvalues of the
matrix A(p, n) = A(fn−1p) · · ·A(fp)A(p) are equal in modulus.

The following theorem gives a complete classification of these cocycles up to
Hölder cohomology. It shows that they can be viewed as elliptic or parabolic.
Orientation-preserving cocycles can have non-orientable invariant sub-bundles, as
demonstrated by Example 8.1. Such a sub-bundle can be made orientable by passing
to a double cover. For a double cover P : M̃ → M, the lift of A to M̃ defined by
Ã(y) = A(P (y)).

Theorem 2.2. Any cocycle A satisfying Condition 2.1 belongs to exactly one of
the five types below. Cocycles of different types are not Hölder continuously coho-
mologous.

I. If A preserves exactly one Hölder continuous sub-bundle, which is orientable,
then A is Hölder continuously cohomologous to a cocycle

A′(x) = k(x)

[
1 α(x)
0 1

]
, where k(x) 6= 0 and α is not cohomologous to 0.

I′. If A preserves exactly one Hölder continuous sub-bundle, which is not ori-
entable, then there exists a cocycle A′ as in I such that the lifts of A and A′

to a double cover are Hölder continuously cohomologous.

II. If A preserves more than one orientable Hölder continuous sub-bundle, then
A is Hölder continuously cohomologous to A′(x) = k(x) · Id, where k(x) 6= 0.
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II′. If A preserves more than one non-orientable Hölder continuous sub-bundle,
then there exists a cocycle A′ as in II such that the lifts of A and A′ to a
double cover are Hölder continuously cohomologous.

III. If A does not preserve any Hölder continuous sub-bundles then A is Hölder
continuously cohomologous to

A′(x) = k(x)

[
cosα(x) − sinα(x)
sinα(x) cosα(x)

]
def
= k(x)R(α(x)), where k(x) > 0

and α :M→ R/2πZ is such that αmodπ is not cohomologous to 0 in R/πZ.

We refer to cocycles A′ as models. In Section 5 we describe cohomology in
GL(2,R) for each type of the model cocycles giving explicit necessary and sufficient
conditions. In particular, we show that measurable cohomology between the mod-
els is Hölder. These results together with Theorem 2.2 allow us to establish the
following.

Theorem 2.3. Suppose that cocycles A and B satisfy Condition 2.1. Then

(i) Any measurable conjugacy between A and B is Hölder continuous;
(ii) If the diffeomorphism f and the cocycles A and B are Ck then a Hölder

continuous conjugacy between A and B is Cr, where r = k− ε for k ∈ N \ {1}
and any ε > 0, and r = k for k = 1,∞, ω.

Remark 1. Theorem 2.3 implies that the Hölder classification in Theorem 2.2
coincides with the measurable one.

Now we consider the question whether conjugacy of the periodic data for two
cocycles implies cohomology.

Condition 2.4. A and B have conjugate periodic data, i.e. for every periodic point
p = fnp inM there exists C(p) ∈ GL(2,R) such that A(p, n) = C(p)B(p, n)C−1(p).

Proposition 1. Let A and B be two cocycles of type II (or III) as in Theorem 2.2.
If A and B satisfy Condition 2.4, then they are Hölder continuously cohomologous.

Example 2.5 shows that, in general, Condition 2.4 does not imply measurable
cohomology even when C(p) is uniformly bounded.

Example 2.5. There exist cocyclesA(x) =

[
1 α(x)
0 1

]
and B(x) =

[
1 β(x)
0 1

]
arbitrarily close to the identity that satisfy Condition 2.4 with C(p) uniformly
bounded, but are not measurably cohomologous.

However, continuity of the conjugacy at a single point ensures Hölder cohomol-
ogy of the cocycles. Continuity of C at p0 can be replaced by a slightly weaker
assumption that limp→z C(p) exists at a point z ∈M.

Theorem 2.6. Let A and B be two cocycles satisfying Condition 2.1. If A and
B satisfy Condition 2.4 and C(p) is continuous at a point p0, then A and B are
Hölder continuously cohomologous.

Corollary 1. Suppose that cocycles A and B satisfying Condition 2.1 have the
same periodic data, i.e. A(p, n) = B(p, n) whenever fnp = p. Then A and B are
Hölder continuously cohomologous.
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Next we consider cocycles that preserve two Hölder continuous transverse sub-
bundles. These include uniformly hyperbolic cocycles, and more generally cocycles
with dominated splitting. Such cocycles cannot be easily characterized by the pe-
riodic data. The only positive result is due to M. Guysinsky [2]. We recall that for
a periodic point p = fnp, the Lyapunov exponents of a cocycle A at p are given by

λp = n−1 ln |λ′p| and µp = n−1 ln |µ′p|,
where λ′p and µ′p are the eigenvalues of the matrix A(p, n).

Theorem 2.7 ([2]). Let A : M → GL(2,R) be a Hölder continuous cocycle over
f . Suppose that there exist numbers λ < µ and a sufficiently small ε > 0 such that

|λ− λp| < ε and |µ− µp| < ε for every periodic point p.

Then A preserves two transverse Hölder continuous sub-bundles. The smallness of
ε depends only on the map f , the numbers λ and µ, and the Hölder exponent of A.

The assumptions of the theorem are quite strong, however, it is not sufficient just
to have λp and µp contained in two disjoint closed intervals, as was demonstrated
by A. Gogolev in [1].

Theorem 2.8. Let A and B be two cocycles such that each one preserves two Hölder
continuous transverse sub-bundles. Then

(i) If the A-invariant sub-bundles are orientable, then A is Hölder cohomologous
to a diagonal cocycle. If the sub-bundles are non-orientable, then there exists
a diagonal cocycle A′ such that the lifts of A and A′ to a double cover are
Hölder cohomologous.

(ii) Any measurable conjugacy between A and B is Hölder continuous.
(iii) If A and B have conjugate periodic data, then they are Hölder cohomologous.

Our main results do not extend to general GL(2,R)-valued cocycles, as demon-
strated by the examples below, based on [2, 12]. These cocycles can be viewed as
non-uniformly hyperbolic, they have two different exponents at (almost) all periodic
points, however the exponents can be arbitrarily close to each other. The examples
also indicate that a meaningful continuous classification of these cocycles is unlikely
due to possibility of measurable but not continuous invariant sub-bundles.

Examples 2.9. Arbitrarily close to the identity, there exist smooth cocycles

A(x) =

[
α(x) β

0 1

]
and B(x) =

[
α(x) 0

0 1

]
such that

(i) A and B are measurably, but not continuously cohomologous;
(ii) A preserves a measurable sub-bundle that is not Hölder continuous;
(iii) A andB have conjugate periodic data, but are not continuously cohomologous.

3. Preliminaries. In this section we briefly introduce the main notions and results
used in this paper.

3.1. Anosov diffeomorphisms. Let f be a diffeomorphism of a compact con-
nected Riemannian manifoldM. It is called Anosov if there exist a decomposition
of the tangent bundle TM into two invariant continuous sub-bundles Es and Eu,
and constants K > 0, κ > 0 such that for all n ∈ N, v ∈ Es, and w ∈ Eu,

‖dfn(v)‖ ≤ Ke−κn‖v‖ and ‖df−n(w)‖ ≤ Ke−κn‖w‖.
A diffeomorphism f is called transitive if there exists a point inM with dense orbit.
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The simplest examples are given by Anosov automorphisms of tori. For a hyper-
bolic matrix F in SL(n,Z), the map F : Rn → Rn projects to an automorphism f
of the torus Tn = Rn/Zn, and f is clearly Anosov.

In the rest of this section, we assume that f is a transitive Anosov diffeomor-
phism. Abundance of periodic orbits is a key feature of such maps, and one of its
strongest manifestations is the Specification Property [5, Theorem 18.3.9]:

Theorem 3.1. For any ε > 0 there exists a positive integer Mε such that given any
collection of orbit segments

O(xl, nl) = {xl, fxl, . . . , fnl−1xl}, l = 1, . . . ,m,

there exists a periodic point p that ε-shadows each of the orbit segments with Mε

iterates between consecutive ones, more precisely, fn1+···+nm+mMεp = p,

dist (f ip, f ix1) ≤ ε, i = 0, . . . , n1 − 1, and

for l = 2, . . . ,m, dist (fn1+···+nl−1+(l−1)Mε+ip, f ixl) ≤ ε, i = 0, . . . , nl − 1.

We will use the following estimate for sums of a Hölder function along close
orbits. This estimate is well-known, see for example [5, Proof of Lemma 19.2.2],
and follows easily from exponential closeness of the orbit segments.

For a function α :M→ R, we denote

α+(x, n) = α(x) + α(fx) + · · ·+ α(fn−1x),

α×(x, n) = α(x)α(fx) · · ·α(fn−1x).
(2)

Lemma 3.2. Let α :M→ R be a Hölder function with Hölder exponent σ. Then
for any sufficiently small ε > 0 there exists a constant γ independent of n such that

if dist (f ix, f iy) ≤ ε, i = 0, . . . , n− 1, then
∣∣α+(x, n)− α+(y, n)

∣∣ ≤ γεσ.
Corollary 2. Let β :M→ R \ {0} be a Hölder function with Hölder exponent σ.
Then for x and y as in Lemma 3.2 we have

e−γε
σ

≤ β×(x, n) ·
(
β×(y, n)

)−1 ≤ eγεσ .
3.2. Livšic Theorems [7, 8]. Let α :M→ R be a Hölder function.

Theorem 3.3. If α+(p, n) = 0 whenever fnp = p, then there exists a Hölder
function ϕ such that α(x) = ϕ(fx) − ϕ(x). Moreover, the conclusion still holds if
α+(p, n) = 0 for every periodic point p in a non-empty open f -invariant set.

The stronger version was proved in [8, Section 5]. Alternatively, one can show
using the Specification Property that the weaker assumption implies that α+(p, n) =
0 for all periodic points.

Theorem 3.4. Let µ be an ergodic probability measure on M with full support
and local product structure. If ϕ is a µ-measurable function such that α(x) =
ϕ(fx)−ϕ(x), then ϕ is Hölder, more precisely, ϕ coincides on a set of full measure
with a Hölder function ϕ̃ such that α(x) = ϕ̃(fx)− ϕ̃(x) for all x.

For a positive Hölder function β, Theorems 3.3 and 3.4 yield multiplicative coun-
terparts: if β×(p, n) = 1 whenever fnp = p, then β(x) = ϕ(fx)/ϕ(x) for a Hölder
function ϕ; and a measurable solution ϕ of the equation β(x) = ϕ(fx)/ϕ(x) is
Hölder.
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3.3. Conformal structures and conformal matrices. A conformal structure S
on R2 is a class of proportional inner products {〈u,v〉S}. It can be identified with
a real symmetric positive definite matrix S with determinant 1 via

〈u,v〉S = 〈Su,v〉, where 〈·, ·〉 is the standard inner product.

The standard conformal structure is given by 〈·, ·〉. The structure S can also be
viewed as a class of proportional ellipses {ES} given by the vectors of the same
length with respect to 〈u,v〉S . For an invertible linear map A : R2 → R2, we denote
by A[S] the conformal structure corresponding to the class of ellipses {AES}, i.e.
the matrix of A[S] is det(A∗A) · (A−1)∗S(A−1).

Suppose that for each x in M we have a conformal structure S(x). This defines
a conformal structure S on M× R2. Let A :M→ GL(2,R) be a cocycle. We say
that S is A-invariant if A(x)[S(x)] = S(fx) for all x.

A matrix is called conformal if it preserves the standard conformal structure, i.e
it is a non-zero scalar multiple of an orthogonal matrix.

4. Proof of Theorem 2.2. The following statement serves as a motivation and
plays an important role in our proofs. It is an immediate corollary of Propositions
2.1, 2.3, 2.6 and 2.7 in [4].

Proposition 2. Suppose that a cocycle A satisfies Condition 2.1. Then

(i) Any measurable A-invariant sub-bundle of E is Hölder continuous;
(ii) Any A-invariant measurable conformal structure on E is Hölder continuous;

(iii) The cocycle A preserves either a Hölder continuous sub-bundle of E or a
Hölder continuous conformal structure on E.

The following lemma shows that the number of invariant sub-bundles is an invari-
ant of cohomology of the corresponding regularity. Since a continuous conjugacy
also preserves orientability of invariant sub-bundles, it follows that cocycles of dif-
ferent types are not Hölder cohomologous.

Lemma 4.1. Suppose that A2(x) = C(fx)A1(x)C(x)−1 for two cocycles A1 and
A2 and a measurable (Hölder) function C :M→ GL(2,R).

(i) If A1 preserves a measurable (Hölder) sub-bundle V1, then A2 preserves a
measurable (Hölder) sub-bundle V2 = CV1.

(ii) If A1 preserves a measurable (Hölder) conformal structure S1, then A2 pre-
serves a measurable (Hölder) conformal structure S2 = C[S1].

I-II′. Suppose that A preserves a non-orientable Hölder continuous sub-bundle V.

Lemma 4.2. There exists a double cover f̃ : M̃ → M̃ of f such that the lift Ã of
A preserves an orientable sub-bundle Ṽ that projects to V.

Proof. We denote by π1(M) the fundamental group ofM and consider a homomor-
phism ρ : π1(M) → Z/2Z = {1,−1} defined as follows: ρ(γ) = 1 if V is orientable
along γ and −1 otherwise. Then ker ρ is a normal subgroup of index 2 in π1(M),

and there exists a double cover P : M̃ → M such that P∗(π1(M̃)) = ker ρ. The

double cover has the property that the lift of a loop γ in M is also a loop in M̃ if
and only if V is orientable along γ. This property of γ is preserved by f . Indeed,
the extension (x, v) 7→ (fx,A(x)v) gives a homeomorphism between the restrictions
of E to γ and f ◦ γ which maps V to V and hence preserves orientability. It follows
that f lifts to f̃ : M̃ → M̃. The lift Ṽ(y) = V(Py) of V to Ẽ = M̃×R2 is orientable

and is invariant under the lift Ã(y) = A(Py).
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We choose a Hölder continuous unit vector fields v1 in Ṽ and v̄2 orthogonal to v1.
Then for the change of basis matrix C̄(y) from the standard basis to {v1(y), v̄2(y)},

B̃(y)
def
= C̄(f̃y) Ã(y) C̄−1(y) is upper triangular. (3)

Suppose that P (y1) = P (y2) for y1, y2 ∈ M̃. It follows from the construction of the
double cover that v1(y1) = −v1(y2), hence v̄2(y1) = −v̄2(y2) and C̄(y1) = −C̄(y2).

Thus B̃(y1) = B̃(y2), and B̃ is the lift of a cocycle B on M of the form

B(x) = k(x)

[
1 ∗
0 g(x)

]
, where k(x) 6= 0 and g(x) > 0. (4)

The lifts Ã of A and B̃ of B are Hölder cohomologous via C̄. The conjugacy C̄
does not project to M in GL(2,R), but does in GL(2,R)/{±Id}. It follows that
A and B have the same number of invariant sub-bundles. Also, for any periodic
point p = fnp the eigenvalues k×(p, n) and k×(p, n)g×(p, n) of the matrix B(p, n)
have the same modulus, and hence g×(p, n) = 1. By Theorem 3.3, there exists a
Hölder continuous function ϕ such that g(x) = ϕ(fx)/ϕ(x). Rescaling the second
coordinate by a factor 1/ϕ(x), we obtain a cocycle A′(x) cohomologous to B(x) of
the form

A′(x) = k(x)

[
1 α(x)
0 1

]
, where k(x) 6= 0. (5)

The lifts Ã of A and Ã′ of A′ to M̃ are cohomologous via a Hölder continuous
function C̃ : M̃ → GL(2,R). It is clear from the construction that

if P (y1) = P (y2) for y1 6= y2 ∈ M̃, then C̃(y1) = −C̃(y2). (6)

If A has an orientable invariant sub-bundle, we obtain B as in (4) without passing
to a double cover. In this case B, and hence A′, are Hölder cohomologous to A.

The following lemma completes the analysis of the cases I-II′.

Lemma 4.3. For A′ as in (5) the following statements are equivalent

(i) A′ preserves at least two Hölder continuous sub-bundles;
(ii) α is Hölder cohomologous to 0;

(iii) A′ is Hölder cohomologous to a scalar cocycle k(x)Id ;
(iv) A′ preserves infinitely many Hölder continuous sub-bundles.

Proof. Suppose that A′ preserves two continuous sub-bundles. The set N ⊂ M
where the sub-bundles do not coincide is non-empty, open and f -invariant. Also,
for every periodic point p = fnp in N ,

A′(p, n) = k×(p, n)

[
1 α+(p, n)
0 1

]
preserves two lines, and hence α+(p, n) = 0.

By Theorem 3.3, α is Hölder cohomologous to 0, i.e. α(x) = s(fx) − s(x) for a
Hölder function s. If such a function s exists, then

A′(x) = C(fx) · l(x) Id · C(x)−1, where C(x) =

[
1 s(x)
0 1

]
, and (iv) follows.

We note thatA-invariant sub-bundles are either all orientable or all non-orientable.
Indeed if a sub-bundle V is orientable, then we can obtain a continuous conjugacy
between A and k(x)Id, which implies that all A-invariant sub-bundles are orientable.

This completes the classification of cocycles that have an invariant sub-bundle.
For future reference in the proof of the Theorem 2.6 we make the following remark.
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Remark 2. Let A be a cocycle of type I ′ or II ′ and let A′ be its model. Then
there is a periodic point p = fnp such that matrices A(p, n) and A′(p, n) are not
conjugate.

Proof. Let p = fnp be a periodic point in M for which f̃nq1 = q2, where q1 and q2
are the lifts of p. Then by (6) we have C(f̃nq1) = C̃(q2) = −C̃(q1) and hence

A′(p, n) = Ã′(q1, n) = C̃(f̃nq1) Ã(q1, n) C̃−1(q1) = −C̃(q1)A(p, n) C̃−1(q1).

If A(p, n) and A′(p, n) are conjugate, so are A(p, n) and −A(p, n), which is impos-
sible.

Existence of such a point p can be easily obtained. The two lifts f̃1 and f̃2 of
f to M̃ satisfy f̃1 = i ◦ f̃2, where i is the involution of the cover. Moreover, both
lifts commute with i, and hence f̃n1 = in ◦ f̃n2 . Hence for a periodic point of an
odd period n, one of the lifts has the desired property. In fact, since both lifts have
points of odd periods, such a point p exists for each lift.

III. Since A does not preserve any sub-bundles, by Proposition 2 (iii), A preserves
a Hölder continuous conformal structure on E . That is, for every x in M, there is
an inner product 〈·, ·〉x such that

〈A(x)u, A(x)v〉fx = kx〈u,v〉x and 〈u,v〉x = 〈S(x)u,v〉 for all u,v ∈ Ex,
where 〈·, ·〉 is the standard inner product and S(x) is a real symmetric positive
definite matrix that depends Hölder continuously on x. For such S(x) there exists a
unique symmetric positive definite matrix C(x) satisfying S(x) = C2(x), which also
depends Hölder continuously on x. Then 〈u,v〉x = 〈S(x)u,v〉 = 〈C(x)u, C(x)v〉
and hence

〈C(fx)A(x)u, C(fx)A(x)v〉 = 〈A(x)u, A(x)v〉fx = kx〈u,v〉x = kx〈C(x)u, C(x)v〉.
Denoting u′ = C(x)u and v′ = C(x)v, we obtain

〈C(fx)A(x)C(x)−1u′, C(fx)A(x)C(x)−1v′〉 = kx〈u′,v′〉 for all u′,v′ ∈ Ex.
Thus A′(x) = C(fx)A(x)C(x)−1 is Hölder continuous and conformal. Since A′(x) is
orientation-preserving, it is a scalar multiple of a rotation, i.e. A′(x) = k(x)R(α(x)).
Replacing α by α+ π if necessary, we can assume that k is positive on M.

It follows from the lemma below that, since A′ does not preserve any invariant
sub-bundles, the function α(x) (mod π) is not cohomologous to 0.

Lemma 4.4. Let A′(x) = k(x)R(α(x)) and k(x) 6= 0. If A′ preserves more
than one measurable conformal structure, then α (mod π) is cohomologous to 0
in R/πZ and A′ preserves infinitely many conformal structures and infinitely many
sub-bundles.

Proof. Suppose that A′ preserves a measurable, and hence continuous, conformal
structure S different from the standard one S0. The set N where S 6= S0 is non-
empty, open and invariant. At every periodic point p = fnp in N , the matrix
A′(p, n) = k×(p, n)R(α+(p, n)) preserves a non-circular ellipse up to scaling, and
hence A′(p, n) = ±k Id. It follows that α+(p, n) = 0 (mod π) for any periodic point
in N , and by Theorem 3.3, α (mod π) is cohomologous to 0 in R/πZ.

Let ᾱ(x) = α(x) (mod π) and let Ā′ = k(x)R(ᾱ(x)) be the projection of A′ to
GL(2,R)/{±Id}. If ᾱ is cohomologous to 0, i.e. ᾱ(x) = s̄(fx) − s̄(x) for a Hölder
continuous function s̄ :M→ R/πZ, then in GL(2,R)/{±Id} we have

Ā′(x) = C̄(fx) · k(x) Id · C̄(x)−1, where C̄(x) = R(s̄(x)).
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Hence Ā′ and A′ preserve infinitely many conformal structures and sub-bundles.

5. Cohomology of the model cocycles. First we consider cohomology of non-
trivial upper triangular cocycles.

Proposition 3. Let A(x) = k(x)

[
1 α(x)
0 1

]
and B(x) = l(x)

[
1 β(x)
0 1

]
,

where k(x), l(x) 6= 0 for all x, and α, β are not cohomologous to 0. Then

(i) Any measurable conjugacy between A and B is Hölder and upper triangular.

(ii) A and B are (measurably or Hölder) cohomologous if and only if there exist
Hölder functions ϕ(x) and s(x) and a constant c 6= 0 such that
k(x)/l(x) = ϕ(fx)/ϕ(x) and α(x)− cβ(x) = s(fx)− s(x).

(iii) A measurable function D(x) satisfies A(x) = D(fx)A(x)D(x)−1 if and only
if D is a constant upper triangular matrix with equal diagonal entries.

The last part of the proposition describes the centralizer, or the set of self-
conjugacies of A. We discuss this set and its connections to conjugacies in Section
5.1.

Proof. (i, ii) Let C be a measurable function such that A(x) = C(fx)B(x)C(x)−1.
We can assume that the set where C is defined is f -invariant. Clearly, A preserves
the sub-bundle E1 spanned by the first coordinate vector, and by Lemma 4.3, it is
the only measurable invariant sub-bundle for A. Since E1 is B-invariant, C(x)E1 is
a measurable A-invariant sub-bundle. If follows that C(x)E1 = E1 and hence the
matrix C(x) is upper triangular a.e. Thus for all x in an invariant set X of full

measure, C(x) = ϕ(x)

[
r(x) s(x)
0 1

]
. Then A(x) = C(fx)B(x)C(x)−1 yields

k(x)

[
1 α(x)
0 1

]
=
l(x)ϕ(fx)

ϕ(x)

[
r(fx)
r(x) − r(fx)r(x) s(x) + r(fx)β(x) + s(fx)

0 1

]
.

It follows that k(x)/l(x) = ϕ(fx)/ϕ(x) on X. The functions k and l have constant
sign onM, moreover they are of the same sign. Otherwise, signϕ(fx) = −signϕ(x)
and hence for the sets X± = {x ∈ X : signϕ(x) = ±1} we have f(X+) = X−, which
contradicts mixing. It follows from Theorem 3.4 that the measurable function ϕ is
Hölder and we have k(x)/l(x) = ϕ(fx)/ϕ(x) for all x in M.

Since r(fx)/r(x) = 1, the function r is invariant, and hence constant a.e. Then

−s(x) + cβ(x) + s(fx) = α(x), equivalently α(x)− cβ(x) = s(fx)− s(x) a.e.,

and hence by Theorem 3.4 the measurable function s(x) is Hölder.
Thus, if there is a measurable conjugacy between A and B then it is of the form

C(x) = ϕ(x)

[
c s(x)
0 1

]
, (7)

where ϕ(x) and s(x) are Hölder continuous functions such that

k(x)/l(x) = ϕ(fx)/ϕ(x) and α(x)− cβ(x) = s(fx)− s(x) for all x in M.

Conversely, if such c, ϕ, and s exist, then C is a Hölder conjugacy between A and
B.

(iii) If a measurable function D(x) satisfies A(x) = D(fx)A(x)D(x)−1, then it
is of the form (7), where ϕ(fx)/ϕ(x) = 1 and (1 − c)α(x) = s(fx) − s(x). This
implies that ϕ is constant and, since α is not cohomologous to 0, c = 1 and hence s
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is constant. Thus D(x) = D = d

[
1 s
0 1

]
, Conversely, any such matrix D satisfies

the equation.

The case of scalar cocycles is simple.

Proposition 4. Let A(x) = k(x)Id and B(x) = l(x)Id, where k(x), l(x) 6= 0. Then

(i) Any measurable conjugacy between A and B is of the form ϕ(x)C0, where
ϕ(x) is a Hölder continuous function such that ϕ(fx)/ϕ(x) = k(x)/l(x).

(ii) A measurable function D(x) satisfies A(x) = D(fx)A(x)D(x)−1 if and only
if D is constant.

Now we consider non-trivial conformal cocycles.

Proposition 5. Let A(x) = k(x)R(α(x)) and B(x) = l(x)R(β(x)), where
k(x), l(x) > 0 for all x, and α, β :M→ R/2πZ are such that α and β (mod π)
are not cohomologous to 0 in R/πZ. Then

(i) Any measurable conjugacy between A and B is Hölder and conformal.

(ii) A and B are (measurably or Hölder) cohomologous if and only if there exist
Hölder continuous functions ϕ :M→ R and s :M→ R/2πZ and a constant
c = ±1 such that k(x)/l(x) = ϕ(fx)/ϕ(x) and α(x)− cβ(x) = s(fx)− s(x).

(iii) A measurable function D(x) satisfies A(x) = D(fx)A(x)D(x)−1 if and only
if D(x) = D is a constant scalar multiple of a rotation.

It is clear from the proof that c = 1 and c = −1 in (ii) correspond to the
conjugacy being orientation-preserving and orientation-reversing respectively.

Proof. (i, ii) Hölder continuity of a measurable conjugacy can be obtained as a
corollary of the result by K. Schmidt [13] on cocycles of bounded distortion. How-
ever, we will obtain it independently as a part of our proof.

Let C be a measurable conjugacy between A and B. The cocycle B preserves
the standard conformal structure S0, and hence C[S0] is a measurable invariant
conformal structure for A. By Lemma 4.4, S0 is the only such conformal structure.
It follows that C[S0] = S0 and hence C is conformal a.e. Since the set where
C is orientation-preserving is f -invariant, by ergodicity, C is either orientation-
preserving a.e. or orientation-reversing a.e. If C is orientation-preserving, we can
write C(x) = ϕ(x)R(s(x)), and the equation A(x) = C(fx)B(x)C−1(x) yields

k(x)R(α(x)) = (l(x)ϕ(fx)/ϕ(x)) ·R(β(x) + s(fx)− s(x)).

It follows that for almost every x

k(x)/l(x) = ϕ(fx)/ϕ(x) and α(x)− β(x) = s(fx)− s(x). (8)

By Theorem 3.4, the measurable functions ϕ and s are Hölder continuous. Con-
versely, if such functions ϕ and s exist, then C(x) = ϕ(x)R(s(x)) is a Hölder
conjugacy between A and B. If C(x) is orientation-reversing, it is a scalar multiple
of a reflection,

C(x) = ϕ(x)

[
cos s(x) sin s(x)
sin s(x) − cos s(x)

]
def
= ϕ(x)Q(s(x)).

It follows that for almost every x

k(x)/l(x) = ϕ(fx)/ϕ(x) and α(x) + β(x) = s(fx)− s(x), (9)

and hence ϕ and s are Hölder continuous.
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(iii) Let D(x) be a measurable function satisfying A(x) = D(fx)A(x)D(x)−1.
If D(x) is orientation-preserving, then D(x) = ϕ(x)R(s(x)), and by (8) we have
ϕ(fx)/ϕ(x) = 1 and s(fx)− s(x) = 0. Hence ϕ(x) = d and s(x) = s are constant,
and D(x) = D = dR(s). Conversely, any such matrix D satisfies the equation.

If D(x) is orientation-reversing, we obtain (9) with k = l and α = β. The latter
implies that α is cohomologous to 0, which contradicts the assumption.

5.1. Centralizers of cocycles and connection to conjugacies.
Let A,B :M→ G be two cocycles. The centralizer of A is the set

Z(A) = {D :M→ G | A(x) = D(fx)A(x)D(x)−1}.
It is easy to see that Z(A) is a group with respect to pointwise multiplication.
We denote by Conj(A,B) the set of conjugacies between A and B, i.e.

Conj (A,B) = {C | A(x) = C(fx)B(x)C−1(x)}.
Both sets can be considered in any regularity. The following properties can be
verified by a direct computation.

(i) Conj (A,B) = Z(A) · C, where C ∈ Conj (A,B).
(ii) Z(A) = C · Z(B) · C−1, where C ∈ Conj (A,B).

In Propositions 3, 4, and 5 we described the centralizers of model upper trian-
gular, scalar, and conformal cocycles respectively. In each case, the centralizer is a
subgroup of the constant matrix functions. It follows that a conjugacy between a
model cocycle A and a measurable cocycle B is unique up to left multiplication by
a constant matrix of the corresponding type. Property (ii) gives, in particular, a
description of the centralizer of a cocycle that is cohomologous to a model one.

6. Proofs of Theorem 2.3, Proposition 1 and Theorem 2.6.

6.1. Proof of Theorem 2.3.
(i) Lemma 4.1 shows that the number of measurable invariant sub-bundles is an

invariant of measurable cohomology. By Proposition 2, measurable sub-bundles are
Hölder continuous, and it follows that cocycles with different number of Hölder con-
tinuous invariant sub-bundles cannot be measurably cohomologous. In the previous
section we established Hölder continuity of a measurable conjugacy for the three
types of model cocycles, and it remains to reduce the general case to the model one.

Let C be a measurable conjugacy between A and B. Suppose that each cocycle
preserves exactly one sub-bundle, which is orientable. Then by Theorem 2.2, A and
B are Hölder cohomologous to model triangular cocycles A′ and B′. Thus we have

A′
CA∼ A

C∼ B
CB∼ B′.

By Proposition 3 (i), the measurable conjugacy CACCB between A′ and B′ is
Hölder, and hence so is C.

Suppose that A and B preserve unique sub-bundles, VA and VB respectively, and
at least one of the sub-bundles is not orientable. We pass to a double cover to make
VA orientable and then, if necessary, we pass to a double cover again to make the
lift of VB orientable. Thus we obtain lifts Ã of A and B̃ of B that are measurably
conjugate via a lift C̃ of C and preserve unique sub-bundles that are orientable. By
the argument above, C̃ is Hölder continuous, and hence so is C.

The result for cocycles with at least two invariant sub-bundles, and with no
invariant sub-bundles, is obtained similarly.
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(ii) This follows from a result by V. Niţică and A. Török [9, Theorem 2.4].
Indeed, it is easy to see that for any model cocycle A we have

lim
n→∞

sup
x∈M

‖AdA(x,n)‖1/n = 1 and lim
n→∞

inf
x∈M

‖AdA(x,n)−1‖−1/n = 1,

where Ad is the adjoint. It follows that the same holds for any cocycle satisfying
Condition 2.1. Hence the theorem can be applied with G = GL(2,R) and α0 = 0.

�

6.2. Proof of Proposition 1.
First we consider two model conformal cocycles A and B as in Proposition 5

satisfying Condition 2.4. Since A(x) = k(x)R(α(x)) and B(x) = l(x)R(β(x)),

A(p, n) = k×(p, n) ·R(α+(p, n)) and B(p, n) = l×(p, n) ·R(β+(p, n)),

which implies that k×(p, n) = l×(p, n).
Suppose that α+(p, n) 6= 0 (mod π). Then β+(p, n) 6= 0 (mod π), and both

A(p, n) and B(p, n) preserve only the standard conformal structure. Hence, de-
pending on the sign of the determinant, C(p) is either a rotation or a reflection. In
Lemma 6.1 below we show that detC(p) has the same sign for all such p. In the
case of a rotation,

A(p, n) = R(s) ·B(p, n) ·R(−s) = B(p, n) and hence α+(p, n) = β+(p, n).

In the case of a reflection, A(p, n) = Q(s) ·B(p, n) ·Q(s) = l×(p, n) ·R(−β+(p, n)),
which implies that α+(p, n) = −β+(p, n).

If α+(p, n) = 0 (mod π), then B(p, n) = A(p, n), and hence α+(p, n) = β+(p, n) =
0 or π. This implies that α+(p, n) − β+(p, n) = 0 and α+(p, n) + β+(p, n) = 0 in
R/2πZ.

Thus there exists a constant c = ±1 such that α+(p, n)− cβ(p, n) = 0 whenever
fnp = p. Hence k(x)/l(x) = ϕ(fx)/ϕ(x) and α(x)−cβ(x) = s(fx)−s(x) for Hölder
functions, and A and B are Hölder cohomologous.

Lemma 6.1. If C(p) satisfies Condition 2.4 for A and B as Proposition 5, then
detC(p) has the same sign for all p where α+(p, n) 6= 0 and β+(p, n) 6= 0 (mod π).

Proof. Suppose that there exist two such points p1 = fn1p1 and p2 = fn2p2 with
detC(p1) > 0 and detC(p2) < 0. Then by the above argument,

α+(p1, n1) = β+(p1, n1) and α+(p2, n2) = −β+(p2, n2). (10)

We use the Specification Property, Theorem 3.1. We consider two orbit segments

{p1, fp1, . . . , fkn1−1p1} and {p2, fp2, . . . , fkn2−1p2}. (11)

Let ε > 0. Then there exists Mε independent of k and a periodic point q such that

dist (f iq, f ip1) < ε for i = 0, . . . , kn1 − 1,

dist (fkn1+Mε+iq, f ip2) < ε for i = 0, . . . , kn2 − 1,

fnq = q, where n = kn1 + kn2 + 2Mε.

(12)

Let σ be a Hölder exponent of α and β, mα = maxM |α(x)|, and mβ = maxM
|β(x)|. Then it is easy to see using Lemma 3.2 that

|α+(q, n)− k · α+(p1, n1)− k · α+(p2, n2)| ≤ γαεσ + 2Mεmα and

|β+(q, n)− k · β+(p1, n1)− k · β+(p2, n2)| ≤ γβεσ + 2Mεmβ ,
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where constants γα and γβ are independent of k. By (10) one can choose a suffi-
ciently large k so that α+(q, n) 6= β+(q, n) and α+(q, n) 6= −β+(q, n), and hence
A(q, n) and B(q, n) are not conjugate.

This completes the proof for the case of two model conformal cocycles. Suppose
that A and B are two cocycles of type III satisfying Condition 2.4. Then by The-
orem 2.2, A and B are Hölder cohomologous to model conformal cocycles A′ and
B′, and it is easy to see that A′ and B′ also satisfy Condition 2.4. Hence A′ and
B′ are Hölder cohomologous, and so are A and B. The result for cocycles of type
II follows similarly from Theorem 2.2 and Proposition 4. �

6.3. Proof of Theorem 2.6. In the rest of this section, we consider

Condition 6.2. For every periodic point p = fnp there exists C(p) ∈ GL(2,R)
such that A(p, n) = C(p)B(p, n)C−1(p), and C(p) is continuous at a point p0.

Proposition 6. Let A and B be triangular cocycles as in Proposition 3.
If A and B satisfy Condition 6.2, then A and B are Hölder cohomologous.

Proof. For every periodic point p = fnp we have

A(p, n) = k×(p, n)

[
1 α+(p, n)
0 1

]
and B(p, n) = l×(p, n)

[
1 β+(p, n)
0 1

]
.

Since the matrices are conjugate, k×(p, n) = l×(p, n). Below we show that there
exists a constant c such that α+(p, n) = cβ+(p, n) whenever fnp = p. By The-
orem 3.3, k(x)/l(x) = ϕ(fx)/ϕ(x) and α(x) − cβ(x) = s(fx) − s(x) for Hölder
functions ϕ and s, and hence A and B are Hölder cohomologous by Proposition 3.

Suppose that there exist points p1 = fn1p1 and p2 = fn2p2 such that

α+(p1,2, n1,2) 6= 0, β+(p1,2, n1,2) 6= 0,
α+(p1, n1)

β+(p1, n1)
= c1 6= c2 =

α+(p2, n2)

β+(p2, n2)
. (13)

Let z ∈ M and ε > 0. We consider two orbit segments: {z} and {p1, fp1, ...
fkn1−1p1}. By the Specification Property, there exists a number Mε independent
of k and a point q1 = f t1q1, where t1 = kn1 + 2Mε + 1, such that

dist(q1, z) < ε and dist(fMε+1+iq1, f
ip1) < ε for i = 0, . . . , kn1 − 1.

Let σ be a Hölder exponent of α and β, mα = maxM |α(x)| and mβ =
maxM |β(x)|. It follows easily from Lemma 3.2 that there exists constants γα and
γβ independent of k such that

|α+(q1, t1)− k · α+(p1, n1) | ≤ γαεσ + (2Mε + 1)mα and

|β+(q1, t1)− k · β+(p1, n1) | ≤ γβεσ + (2Mε + 1)mβ .

Let δ = 1
3 |c1 − c2|. Since α+(p1, n1) 6= 0 and β+(p1, n1) 6= 0, by choosing a

sufficiently large k, we can ensure that α+(q1, t1) 6= 0, β+(q1, t1) 6= 0, and∣∣∣∣ α+(q1, t1)

β+(q1, t1)
− c1

∣∣∣∣ =

∣∣∣∣ α+(q1, t1)

β+(q1, t1)
− k · α+(p1, n1)

k · β+(p1, n1)

∣∣∣∣ < δ.

Similarly, using the orbit of p2, in an ε-neighborhood of z we can find a periodic
point q2 of a period t2 such that α+(q2, t2) 6= 0, β+(q2, t2) 6= 0, and the ratio
α+(q2, t2)/β+(q2, t2) is δ-close to c2. It follows that at every point z ∈M, the ratio
α+(p, n)/β+(p, n) has no limit, and in particular the ratio is discontinuous at every
periodic point.
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Suppose that α+(p, n) 6= 0 and β+(p, n) 6= 0 and A(p, n) = C(p)B(p, n)C(p)−1.
Then C(p) is upper triangular, and a direct calculation shows that it is of the form

C(p) = ϕ(p)

[
α+(p, n)/β+(p, n) d(p)

0 1

]
.

Therefore, discontinuity of the ratio α+(p, n)/β+(p, n) implies discontinuity of C.
Thus no two periodic points satisfy (13). It follows that there exists a constant

c such that α+(p, n) = cβ+(p, n) at every periodic point, and hence A and B are
Hölder cohomologous.

Next we show that cocycles A and B of different types, as in Theorem 2.2, cannot
satisfy Condition 6.2. Clearly, this is the case for cocycles with different number
of invariant sub-bundles. The following lemma establishes this for cocycles with
different orientability types of invariant sub-bundles.

Lemma 6.3. Let A be a cocycle of type I (II) and B be a cocycle of type I ′ (II ′).
Then A and B do not satisfy Condition 6.2.

Proof. Suppose that cocycles A of type I and B of type I′ satisfy Condition 6.2.
By Theorem 2.2, there exist model triangular cocycles A′ and B′ such that A′ is
Hölder cohomologous to A, and the lifts B̃ of B and B̃′ of B′ to a double cover
M̃ are Hölder cohomologous. Clearly, the lifts Ã of A and Ã′ of A′ to M̃ are also
Hölder cohomologous. Since A and B satisfy Condition 6.2, so do Ã and B̃ and
hence the model cocycles Ã′ and B̃′. By Proposition 6, the cocycles Ã′ and B̃′ are
Hölder cohomologous, and it follows from Lemma 6.4 below that so are A′ and B′.
Thus the cocycle B of type I′ and its model B′ have conjugate periodic data, which
contradicts Remark 2. A similar argument yields the result for cocycles of types II
and II′.

Lemma 6.4. Let A and B be model triangular cocycles as in Proposition 3 and let
Ã and B̃ be their lifts to the same double cover. Then a Hölder conjugacy between
Ã and B̃ projects to a Hölder conjugacy between A and B.

Proof. We denote the lifts of α and β by α̃ and β̃. Since Ã and B̃ are Hölder
cohomologous, α̃+(q,m) = cβ̃+(q,m) whenever f̃mq = q ∈ M̃. Let p = fnp ∈ M
and let q ∈ M̃ be such that p = P (q). Then q = f̃m(q) where m is either n or 2n,
and it follows that α+(p, n) = cβ+(p, n). Similarly, k×(p, n) = l×(p, n) whenever
fnp = p. Thus A and B are Hölder cohomologous. The discussion in Section 5.1
implies that a conjugacy between A and B, as well as between Ã and B̃, is unique
up to multiplication by a constant matrix. Hence a conjugacy between A and B is
the projection of a conjugacy between Ã and B̃.

We conclude that if A and B satisfy Condition 6.2, then they are of the same
type. By Proposition 1, it remains to consider cocycles of types I, I′, and II′. If
A and B are of type I, they are Hölder cohomologous to model triangular cocycles
A′ and B′, respectively. It follows that A′ and B′ also satisfy Condition 6.2. By
Proposition 6, A′ and B′ are Hölder cohomologous, and hence so are A and B.

Let A and B be cocycles of type I′. It follows easily from Lemma 6.3 that their
invariant sub-bundles can be made orientable by passing to the same double cover
M̃. The lifts Ã and B̃ to M̃ are of type I and satisfy Condition 6.2, and hence are
Hölder cohomologous. By Theorem 2.2, there exist model triangular cocycles A′
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and B′ whose lifts to M̃ are Hölder cohomologous to Ã and B̃ respectively. Thus
we have

Ã′
C̃A∼ Ã

C̃∼ B̃
C̃B∼ B̃′

↓ ↓ ↓ ↓
A′ A B B′

Let y1, y2 ∈ M̃ be such that P (y1) = P (y2). By (6), C̃A(y1) = −C̃A(y2) and

C̃B(y1) = −C̃B(y2). By Lemma 6.4, the conjugacy C ′ = C̃AC̃C̃B between Ã′ and

B̃′ projects to M, which means that C ′(y1) = C ′(y2). Thus, C̃(y1) = C̃(y2) and

hence C̃ projects to a conjugacy between A and B.
A similar argument yields the result for cocycles of type II′. �

7. Proof of Theorem 2.8. First we discuss cohomology of diagonal cocycles that
serve as models for cocycles with two transverse invariant sub-bundles. We denote
the coordinate sub-bundles by E1 and E2, and we denote a diagonal matrix with
entries α1, α2 by diag (α1, α2).

Lemma 7.1. Let A(x) = diag (α1(x), α2(x)), where α1,2(x) 6= 0. A preserves a
measurable sub-bundle other than E1 and E2 if and only if α1(x)/α2(x) = s(fx)/s(x)
for a Hölder function s(x), equivalently, A(x) is Hölder cohomologous to α1(x)Id.

Proof. Let V be the measurable invariant sub-bundle. Since the set where V differs
from E1 and E2 is invariant, it is of full measure by ergodicity. Therefore we can write
V(x) as the span of v(x) =

[
s(x)
1

]
, where s is a non-zero measurable function. Then

v(fx) = c(x) · A(x)v(x) for a scalar function c, which implies that α1(x)/α2(x) =
s(fx)/s(x) and hence s is Hölder. It follows that

α1(x) Id = CA(fx) ·A(x) · CA(x)−1, where CA(x) = diag (1, s(x)).

Clearly, if A is Hölder cohomologous to a scalar cocycle, then A preserves infinitely
many Hölder continuous sub-bundles.

Cocycles cohomologous to scalar ones were discussed in the previous sections.

Proposition 7. Suppose A(x) = diag (α1(x), α2(x)) and B(x) = diag (β1(x), β2(x)),
where α1,2(x) 6= 0 and β1,2(x) 6= 0, are not cohomologous to scalar cocycles. Then

(i) A and B are Hölder cohomologous if and only if there exist measurable,
equivalently Hölder, functions s1 and s2 such that either
α1(x)/β1(x) = s1(fx)/s1(x) and α2(x)/β2(x) = s2(fx)/s2(x) for all x, or
α1(x)/β2(x) = s1(fx)/s1(x) and α2(x)/β1(x) = s2(fx)/s2(x) for all x.

(ii) Any measurable conjugacy between A and B is Hölder and either diagonal or
anti-diagonal.

(iii) The centralizer of A consists of all constant diagonal matrices.
(iv) If A and B have conjugate periodic data, then they are Hölder cohomologous.

Proof. (i, ii, iii) If A(x) = C(fx)B(x)C(x)−1 for a measurable function C, then
measurable sub-bundles C(E1) and C(E2) are A-invariant. It follows from Lemma
7.1 that either C(E1) = E1 and C(E2) = E2, or C(E1) = E2 and C(E2) = E1.
Therefore, C(x) is either a diagonal or an anti-diagonal matrix. This reduces the
questions of cohomology of A and B to that of cohomology of the scalar functions
αi and βi, and (i), (ii), and (iii) follow easily.
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(iv) By (ii) it suffices to show that either

α×1 (p, n) = β×1 (p, n) and α×2 (p, n) = β×2 (p, n) whenever fnp = p, or

α×1 (p, n) = β×2 (p, n) and α×2 (p, n) = β×1 (p, n) whenever fnp = p.
(14)

At every point p = fnp the eigenvalues of A(p, n) and B(p, n) are equal, i.e.

{α×1 (p, n), α×2 (p, n) } = {β×1 (p, n), β×2 (p, n) }. (15)

Suppose that for points p1 = fn1p1 and p2 = fn2p2 we have

α×1 (p1, n1) = β×1 (p1, n1) 6= β×2 (p1, n1) and α×1 (p2, n2) = β×2 (p2, n2) 6= β×1 (p2, n2).

We proceed as in the proof of Lemma 6.1. We consider orbit segments as in (11)
and a periodic point q = fnq satisfying (12). By Corollary 2 there exist constants
γ and σ independent of k such that

e−γε
σ

≤ α×1 (q, kn1)

α×1 (p1, kn1)
≤ eγε

σ

, e−γε
σ

≤ α×1 (fkn1+Mεq, kn2)

α×1 (p2, kn2)
≤ eγε

σ

,

and the same estimates hold with β1 in place of α1. Taking a sufficiently large
k ensures that α×1 (q,m) 6= β×1 (q,m). A similar argument shows that α×1 (q,m) 6=
β×2 (q,m). This contradicts (15) and hence (14) is satisfied.

Now we complete the proof of the theorem. We consider a cocycle A with two
Hölder continuous transverse sub-bundles E1A and E2A. Example (iii) in Section 8.1
shows that the sub-bundles are not necessarily orientable. Clearly, if one of the two
invariant sub-bundles is orientable, then so is the other one.

(i) If the A-invariant sub-bundles are orientable, then there exist continuous unit
vector fields v1 and v2 spanning E1A and E2A respectively. Let CA(x) be the change
of basis matrix from {v1(x),v2(x)} to the standard basis. Then CA is Hölder
continuous and the cocycle A′(x) = CA(fx)A(x)CA(x)−1 is diagonal.

If E1A is not orientable, using a double cover as in Lemma 4.2 we obtain as in
the proof of Theorem 2.2 a cocycle A′′ with two transverse orientable invariant
sub-bundles such that the lifts of A and A′′ are Hölder cohomologous. Then A′′ is
cohomologous to a diagonal cocycle as before.

Now (ii) and (iii) follow from (i) and Proposition 7 as in the proofs of Theorems
2.3 and 2.6 respectively. We note that conjugacy of the periodic data implies con-
jugacy of the model diagonal cocycles and precludes having invariant sub-bundles
of different types as in Lemma 6.3. �

8. Examples.

8.1. Orientation-preserving cocycles with non-orientable invariant sub-
bundles. There exists a smooth orientation-preserving cocycle A such that

(i) A has a unique invariant sub-bundle that is not orientable;
(ii) A preserves infinitely many non-orientable sub-bundles;

(iii) A preserves exactly two transverse sub-bundles, which are non-orientable.

Let T2 = R2/Z2 be the standard torus and let T̃2 = R2/(2Z×Z) be its double cover.

We consider F =

[
5 2
2 1

]
, or any hyperbolic matrix [Fij ] in SL(2,Z) such that F11

is odd and F12 is even. The map F : R2 → R2 projects to Anosov automorphisms
f : T2 → T2 and f̃ : T̃2 → T̃2. Let C̃ : T̃2 → GL(2,R) be the function given by
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C̃(x) = R(πx1), the rotation by the angle πx1. This function is not 1-periodic in
x1, and hence it does not project to T2.

(i) We define a cocycle Ã : T̃2 → GL(2,R) over f̃ as

Ã(x) = C̃(f̃x)B C̃(x)−1, where B =

[
1 1
0 1

]
. (16)

The calculation below shows that Ã is 1-periodic in both x1 and x2 and thus it
projects to a continuous and, in fact, analytic cocycle A over f on T2.

Ã(x) = R(π(5x1 + 2x2))

(
Id +

[
0 1
0 0

])
R(−πx1) = R(2π(2x1 + x2)) +

+

[
sin(2π(2x1+x2))+sin(2π(3x1+x2))

2
cos(2π(2x1+x2))+cos(2π(3x1+x2))

2
cos(2π(3x1+x2))−cos(2π(2x1+x2))

2
sin(2π(2x1+x2))+sin(2π(3x1+x2))

2

]
.

The constant cocycle B : T̃2 → GL(2,R) preserves only the sub-bundle Ẽ1
spanned by the the first coordinate vector. Hence Ṽ(x) = C̃(x) Ẽ1 is the unique

invariant sub-bundle for Ã. As C̃(x) = R(πx1), it is easy to see that Ṽ projects to a
continuous A-invariant sub-bundle V on T2, which is not orientable as its orientation
is reversed along the first coordinate loop.

Clearly, the cocycles A and B on T2 are not continuously cohomologous as a
continuous conjugacy preserves orientablility of invariant sub-bundles. In fact, they
are not even measurably cohomologous, as follows from Theorem 2.3. However,
their lifts are smoothly cohomologous via C̃ on T̃2.

(ii) Considering B = Id in (16) yields an example. Since any constant sub-

bundle Ṽconst is preserved by B, Ã preserves the sub-bundles Ṽ = C̃Ṽconst. These
sub-bundles project to A-invariant non-orientable sub-bundles on T2.

(iii) We consider B = diag (2, 1) in (16). It is easy to see that then the cocycle
A has exactly two transverse invariant sub-bundles that are non-orientable.

8.2. Construction of Example 2.5.
Let α and β be Hölder functions such that α(x) > 0 and β(x) > 0 for all x in M;
for two periodic points p1 and p2 of periods n1 and n2 respectively,

α(f ip1) = β(f ip1), 0 ≤ i ≤ n1 − 1, and α(f ip1) = 2β(f ip2), 0 ≤ i ≤ n2 − 1;

and β(x) ≤ α(x) ≤ 2β(x) < ε for all x. The function β can be chosen constant.

Since α+(p, n) > 0 and β+(p, n) > 0 at every periodic point p, the functions α
and β are not cohomologous to 0, and the matrices A(p, n) and B(p, n) are conjugate
by

C(p) =

[
α+(p, n)/β+(p, n) 0

0 1

]
.

Since 1 ≤ α+(p, n)/β+(p, n) ≤ 2 for every p, C(p) is uniformly bounded.
As α+(p1, n1) = β+(p1, n1) and α+(p2, n2) = 2β+(p2, n2), there is no constant c

such that α+(p, n)− cβ+(p, n) = 0 for every periodic p. Thus by Proposition 3 (ii)
the cocycles A and B are not measurably cohomologous.

8.3. Construction of Examples 2.9.

(i) We describe a simplified version of the example in Section 9 of [12].
Let f :M→M be a C2 Anosov diffeomorphism that fixes a point x0, and let α(x)
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be a smooth function such that α(x0) = 1 and 0 < α(x) < 1 for all x 6= x0. The
cocycles can be made arbitrarily close to the identity by choosing β close to 0 and
α(x) close to 1. Since the matrices A(x0) and B(x0) are not conjugate, the cocycles
A and B are not continuously cohomologous.

A measurable conjugacy is constructed in the form C(x) =

[
1 c(x)
0 1

]
. Then

A(x) = C(fx)B(x)C(x)−1 is equivalent to[
α(x) β

0 1

]
=

[
α(x) c(fx)− α(x)c(x)

0 1

]
.

A function c such that c(fx) = β + α(x)c(x) is obtained as a series. Let

cm(x) = β ·
(
1 + α(f−1x) + α(f−1x)α(f−2x) + · · ·+ α(f−1x) · · ·α(f−mx)

)
.

By the Birkhoff Ergodic Theorem, (α(f−1x) · · ·α(f−m(x))1/m → α < 1 a.e. It
follows that the sequence {cm(x)} converges to a limit c(x) a.e., and the function
c(x) is measurable as a limit of continuous functions. The functions cm satisfy
the equation cm(fx) = β + α(x)cm−1(x), and passing to the limit we see that
c(fx) = β + α(x)c(x).

(ii) Let f and α be as in (i). Clearly, B preserves the coordinate sub-bundles E1
and E2. Hence A preserves E1 and a measurable sub-bundle V = CE2 6= E1, which
is not continuous. Indeed, as we show below E1 is the only continuous A-invariant
sub-bundle. A direct calculation shows that for p = fnp,

A(p, n) =

[
α×(p, n) β · α∗(p, n)

0 1

]
, where

α∗(p, n) = 1 + α(fn−1p) + α(fn−1p)α(fn−2p) + · · ·+ α(fn−1p) · · ·α(fp) =

= 1 + α(f−1p) + α(f−1p)α(f−2p) + · · ·+ α(f−1p) · · ·α(f−n+1p).

Hence the eigenvectors of the matrix A(p, n) are e1 and

v(p) =

[
c(p)

1

]
, where c(p) =

β · α∗(p, n)

1− α×(p, n)
. (17)

We note that c(p) = limm→∞ cm(p), where cm(p) are as in (i).

Lemma 8.1. Let x 6= x0, ε > 0, and N > 0. Then there exists a periodic point
q 6= x0 such that dist (q, x) < ε and c(q) > N .

Proof. We assume that 0 < ε < 1
2dist(x, x0) and apply the Specification Property

to the orbit segments {x} and {x0, fx0, . . . , fk−1x0} = {x0, . . . , x0}. Then there
exists a number Mε independent of k and a periodic point q such that

dist(q, x) < ε, dist(fMε+1+iq, x0) ≤ ε, i = 0, . . . , k − 1, and f2Mε+k+1q = q.

Clearly, q 6= x0. Let q′ = fMε+1q. Since the function α is Lipschitz and α(x0) = 1,
it follows from Corollary 2 that there exists a constant γ independent of k such that

α(q′)α(fq′) . . . α(f jq′) ≥ e−γε for j = 0, . . . , k − 1.

It follows that

c(q)/β ≥ α∗(q, 2Mε + k + 1) ≥

α(f2Mε+kq) . . . α(fMε+kq) + · · ·+ α(f2Mε+kq) . . . α(fMε+1q) =

α(f2Mε+kq) . . . α(fMε+k+1q) ·
(
α(fk−1q′) + · · ·+ α(fk−1q′) · · ·α(q′)

)
≥ mMεk e−γε,
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where m = minM α(x). Taking a sufficiently large k ensures that c(q) > N .

Let V 6= E1 be a continuous A-invariant sub-bundle and let x 6= x0 be a point
such that V(x) 6= E1(x). Then for every periodic point p in a small neighborhood
of x, V(p) 6= E1(p) and hence V(p) is spanned by v(p) as in (17). It follows from
Lemma 8.1 and continuity of V that V(x) = E1(x), a contradiction.

(iii) We describe an example similar to one in [2]. Let f :M→M be an Anosov
diffeomorphism and let S be a closed f -invariant set in M that does not contain
periodic points. Let α be a smooth function such that

α(x) = 1 for x ∈ S and 0 < α(x) < 1 for x /∈ S.
At every periodic point p = fnp the matrices A(p, n) and B(p, n) have the same
eigenvalues, 1 and α×(p, n) < 1, are hence are conjugate.

However, there is no continuous function C such that A(x) = C(fx)B(x)C−1(x).
Otherwise, for x ∈ S

A(x, n) =

[
1 nβ
0 1

]
= C(fnx)B(x, n)C(x)−1 = C(fnx)C(x)−1,

which implies that C is unbounded.
It can be shown as in (i) that the cocycles A and B are measurably comologous.

It can also be seen as in (ii) that the set of conjugacies C(p) at the periodic points
is unbounded, unlike in our Example 2.5.
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[12] M. Pollicott and C. P. Walkden, Livšic theorems for connected Lie groups, Trans. Amer.

Math. Soc., 353 (2001), 2879–2895.
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