
ON UNIFORMLY QUASICONFORMAL ANOSOV SYSTEMS

VICTORIA SADOVSKAYA

Abstract. We show that for any uniformly quasiconformal symplectic Anosov
diffeomorphism of a compact manifold of dimension at least 4, its finite cover is
C∞ conjugate to an Anosov automorphism of a torus. We also prove that any
uniformly quasiconformal contact Anosov flow on a compact manifold of dimension
at least 5 is essentially C∞ conjugate to the geodesic flow of a manifold of constant
negative curvature.

1. Introduction

In this paper we study rigidity properties of uniformly quasiconformal Anosov
systems. Our main goal is to obtain a complete classification of uniformly quasi-
conformal symplectic Anosov diffeomorphisms and contact Anosov flows up to a
C∞ conjugacy. Such a classification for the diffeomorphisms is established in Theo-
rems 1.1, and for flows in Theorem 1.2.

Theorem 1.1. Let f be a C∞ symplectic Anosov diffeomorphism of a compact man-
ifold M, dim M ≥ 4. If f is uniformly quasiconformal on the unstable distribution,
then its finite cover is C∞ conjugate to an Anosov automorphism of a torus.

Continuous time conformal Anosov systems were studied by M. Kanai in the spe-
cial case of geodesic flows. He proved in [8] that the geodesic flow of a compact
Riemannian manifold of negative curvature of dimension at least 3 is C2 conju-
gate to the geodesic flow of a manifold of constant negative curvature under the
assumption that either (a) the flow preserves a continuous conformal structure on
the strong stable distribution, or (b) the flow satisfies 1/2 pinching and preserves a
bounded measurable conformal structure on the strong stable distribution. Later C.
Yue showed in [15] that Kanai’s result can be applied to uniformly quasiconformal
geodesic flows of manifolds of negative curvature. He also noted that, by the main
theorem of G. Besson, G. Courtois, and S. Gallot in [1], the existence of the above
C2 conjugacy implies that the manifold has constant negative curvature. Our next
theorem generalizes Yue’s result to the case of contact flows.

Theorem 1.2. Let ϕt be a C∞ contact Anosov flow on a compact manifold M,
dim M ≥ 5. If the flow is uniformly quasiconformal on the strong unstable distri-
bution, then it is essentially C∞ conjugate to the geodesic flow of a manifold of
constant negative curvature.
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More precisely, let X be the vector field generating ϕt. Then there exists a closed
1-form α satisfying 1 + α(X) > 0 such that the flow generated by the vector field
Y = X/(1 + α(X)) on a finite cover of M is C∞ conjugate to the geodesic flow of a
compact manifold of constant negative curvature. The cohomology class of the form
α is determined uniquely.

In a particular case when ϕt is a geodesic flow of a compact Riemannian manifold
N of negative curvature of dimension at least 3, ϕt is actually conjugate to the
geodesic flow on a manifold of constant negative curvature. Then it follows from the
main theorem of G. Besson, G. Courtois, and S. Gallot in [1] that N is a manifold
of constant negative curvature. Thus we recover Yue’s result for geodesic flows.

It was noted by Y. Benoist, P. Foulon, and F. Labourie in [2] that if X generates a
contact Anosov flow, then its time change generated by Y as in Theorem 1.2 is also
contact. Moreover, the inverse time change is of the same type, X = Y/(1−α(Y )).
So the flow ϕt can be viewed as such a time change of a finite factor of the geodesic
flow of a compact manifold of constant negative curvature.

We show in Section 3.4 that any smooth time change of a uniformly quasicon-
formal Anosov flow is also uniformly quasiconformal. Thus there exist smooth time
changes of the geodesic flow of a compact manifold of constant negative curvature
which are uniformly quasiconformal, but not C∞ conjugate to a time change of
the above type. So the assumption that the flow is contact can not be omitted in
Theorem 1.2.

Our approach to the proof of Theorems 1.1 and 1.2 is different from the approach
developed by M. Kanai. We use results of Y. Benoist, P. Foulon, and F. Labourie,
who proved in [2] and [3] that

(a) any symplectic Anosov diffeomorphism with C∞ Anosov splitting is C∞ con-
jugate to an automorphism of an infranilmanifold, and

(b) any contact Anosov flow with C∞ Anosov splitting is essentially C∞ conjugate
(in the sense described in Theorem 1.2) to the geodesic flow of a locally symmetric
manifold of negative curvature.

The main steps of our proof are Theorems 1.3 and 1.4 which may be of independent
interest.

Theorem 1.3. Let f be a topologically transitive C∞ Anosov diffeomorphism (ϕt be
a topologically mixing C∞ Anosov flow) on a compact manifold M which is uniformly
quasiconformal on the (strong) unstable distribution. Then it is conformal with
respect to a Riemannian metric on this distribution which is Hölder continuous on
M and C∞ along the leaves of the (strong) unstable foliation.

The existence of such a metric for Anosov flows (and diffeomorphisms) was es-
tablished by R. de la Llave in [10] under the assumption that the strong unstable
subspaces Esu(x) can be continuously identified with R dim Esu

in such a way that
the restriction of the differential to Esu is a scalar multiple of identity.
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We use the above metric to establish smoothness of the (weak) stable distribution
for uniformly quasiconformal systems.

Theorem 1.4. Let f (ϕt) be a C∞ Anosov diffeomorphism (flow) on a compact
manifold M with dim Eu ≥ 2 (dim Esu ≥ 2). Suppose it is conformal with respect
to a Riemannian metric on the (strong) unstable distribution which is continuous
on M and C∞ along the leaves of the (strong) unstable foliation. Then the (weak)
stable holonomy maps are conformal, and the (weak) stable distribution is C∞.

We note that in Theorems 1.3 and 1.4 we do not assume that the diffeomorphism
is symplectic (the flow is contact).

We would like to thank Boris Kalinin and Ralf Spatzier for encouragement, sup-
port, and helpful discussions.

2. Preliminaries

In this section we briefly introduce the main notions used throughout this paper.

2.1. Anosov flows. Let X be a smooth vector field on a compact Riemannian
manifold M, and let ϕt : M → M be the flow generated by X. The flow ϕt is
called Anosov if there exists a decomposition of the tangent bundle TM into three
ϕt-invariant continuous subbundles RX, Esu, Ess, and constants C > 0, λ > 0 such
that for all t ≥ 0,

‖ dϕ−t(v) ‖ ≤ Ce−λt‖v‖ for v ∈ Esu,

‖ dϕt(w) ‖ ≤ Ce−λt‖w‖ for w ∈ Ess.

The distributions Esu, Ess, Eu = Esu ⊕RX, and Es = Ess ⊕RX are called strong
unstable, strong stable, weak unstable and weak stable. It is well-known that these
distributions are tangential to the foliations W su, W ss, W u, and W s respectively
(see, for example [9]). The leaves of these foliations are C∞ injectively immersed
Euclidean spaces, but in general the distributions Esu, Ess, Eu, and Es are only
Holder continuous transversally to the corresponding foliations.

Anosov diffeomorphisms are defined similarly (see [9]).

2.2. Contact flows. Let M be a smooth manifold of dimension 2n + 1. A contact
form θ on M is a smooth 1-form such that θ ∧ (dθ)n is a volume form on M. Let
ϕt be the flow on M generated by a smooth vector field X. The flow ϕt is called
contact if it preserves a contact form θ, i.e. for any t, (ϕt)∗(θ) = θ, and θ(X) = 1.
If the flow ϕt is Anosov, then ker θ = Ess ⊕ Esu.

2.3. Symplectic diffeomorphisms. Let M be a smooth even-dimensional man-
ifold. A symplectic form on M is a closed non-degenerate differential 2-form. A
diffeomorphism f : M → M is called symplectic if it preserves a symplectic form ω,
i.e. f ∗(ω) = ω.
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2.4. Uniformly quasiconformal flows. Let ϕt be an Anosov flow on a compact
Riemannian manifold M. We say that the flow is uniformly quasiconformal on the
strong unstable distribution or uniformly u-quasiconformal if the quasiconformal
distortion

K(x, t) =
max { ‖ dϕt(v) ‖ : v ∈ Esu(x), ‖v‖ = 1 }
min { ‖ dϕt(v) ‖ : v ∈ Esu(x), ‖v‖ = 1 }

is uniformly bounded for all t ∈ R and x ∈ M. This is equivalent to the classical
definition of uniform quasiconformality, since

K(x, t) = lim sup
r→0

sup { dsu(ϕty, ϕtx) : y ∈ Ssu(x, r) }
inf { dsu(ϕty, ϕtx) : y ∈ Ssu(x, r) }

,

where dsu is the induced metric along the W su leaves and Ssu(x, r) = {y ∈ W su(x) :
dsu(x, y) = r}.

If K(x, t) = 1 for all x and t, the flow is called u-conformal. The notions of
s-conformality and uniform s-quasiconformality are defined similarly. If the flow
is both uniformly u-quasiconformal (u-conformal) and uniformly s-quasiconformal
(s-conformal) then it is called uniformly quasiconformal (conformal).

Note that if ϕt is uniformly quasiconformal with respect to some Riemannian
metric on M, then it is uniformly quasiconformal with respect to any Riemannian
metric on M. Thus the notion does not depend on the choice of the metric.

2.5. Conformal structures. (See [8] for more details.) A conformal structure on
Rn, n ≥ 2, is a class of proportional inner products. The space Cn of conformal
structures on Rn identifies with the space of real symmetric positive definite n× n
matrices with determinant 1 which is isomorphic to SL(n, R)/SO(n, R). It is known
that the space Cn = SL(n, R)/SO(n, R) carries a GL(n, R)-invariant metric for
which Cn is a Riemannian symmetric space of non-positive curvature. Any linear
isomorphism of Rn induces an isometry of Cn.

Now, let ϕt be an Anosov flow on a compact manifold M. For each x ∈ M, let
Csu(x) be the space of conformal structures on Esu(x). Thus we obtain a bundle Csu

over M whose fiber over x is Csu(x). A continuous (smooth, measurable) section
of Csu is called a continuous (smooth, measurable) conformal structure on Esu. A
measurable conformal structure τ is called bounded if the distance between τ(x)
and τ0(x) is uniformly bounded on M, where τ0 is a continuous conformal structure
on M.

Similarly, we define a bundle Cu and conformal structures for the case of an
Anosov diffeomorphism of M.

Clearly, a flow (diffeomorphism) is conformal with respect to a Riemannian metric
if and only if it preserves the conformal structure associated with this metric.
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3. Proofs of the Main Results

3.1. Proof of Theorem 1.3. We prove the theorem for a uniformly u-quasiconformal
Anosov flow. The proof and the intermediate statements can be easily modified for
the case of diffeomorphism.

Let ϕt be a uniformly u-quasiconformal Anosov flow on a compact manifold M.
Our goal is to obtain a metric on the strong unstable distribution with respect to
which the flow is u-conformal. This metric will be Hölder continuous on M and C∞

along the leaves of the strong unstable foliation. To construct such a metric, we do
not need to assume that the flow is contact.

We obtain the metric as follows. First we construct an invariant bounded mea-
surable conformal structure, then a continuous invariant conformal structure. After
that we use a statement on non-stationary linearization to show that this structure
is actually C∞ along the leaves of the strong unstable foliation. Then we normalize
the conformal structure using a smooth function to obtain a metric.

The next proposition follows from a theorem due to P. Tukia who established this
result for an arbitrary quasiconformal group action in [14]. It was observed earlier
by D. Sullivan in [13] for the case of discrete groups. Below we outline Tukia’s proof
for our case.

Proposition 3.1. Let ϕt be a uniformly u-quasiconformal Anosov flow on a compact
manifold M. Then ϕt preserves a bounded measurable conformal structure τ̃ on the
strong unstable distribution.

Proof. Let τ0 be a continuous conformal structure on M. For x ∈ M, consider the
set C(x) = {ϕ−t(τ0(ϕ

tx)), t ∈ R }. Since the flow is uniformly u-quasiconformal, it
is a bounded subset of Csu(x), the space of conformal structures on Esu(x). Since
Csu(x) has non-positive curvature, there exists a uniquely determined ball of the
smallest radius containing C(x). We denote its center by τ̃(x). One can show that
the conformal structure τ̃ is invariant, bounded and measurable. �

The following statement was obtained jointly with Boris Kalinin.

Proposition 3.2. Let ϕt be a topologically mixing Anosov flow on a compact man-
ifold M which preserves a bounded measurable conformal structure τ̃ on the strong
unstable distribution. Then there exists a Hölder continuous ϕt-invariant conformal
structure τ on the strong unstable distribution, which coincides with τ̃ on a set of
full (Bowen-Margulis) measure.

Remark 3.1. Since a topologically transitive Anosov diffeomorphism of a compact
connected manifold is topologically mixing, it is enough to assume topological tran-
sitivity for the discrete-time analog of this proposition.

Proof. To simplify the notations, we identify tangent spaces at close points. This
allows us to conveniently compare conformal structures at different points. Since
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the distribution Esu is only Hölder continuous (with some Hölder exponent α > 0),
the identification is also Hölder continuous, and hence dϕt is Hölder continuous
with respect to the identification. The map d(ϕ−1)x induces an isometry Tx from
Csu(x), the space of conformal structures on Esu(x), to Csu(ϕ−1x), the space of
conformal structures on Esu(ϕ−1x). For x ∈ M, we denote by τ̃(x) the conformal
structure on Esu(x).

First we estimate the distance between the conformal structures at x ∈ M and
at a nearby point y ∈ W ss(x). Let xi = ϕi(x), and yi = ϕi(y). Since the conformal
structure τ̃ is invariant, τ̃(x) = Tx1(τ̃(x1)) and τ̃(y) = Ty1(τ̃(y1)). Since T is an
isometry, we obtain

dist(τ̃(x), τ̃(y)) = dist(Tx1(τ̃(x1), Ty1(τ̃(y1)))

≤ dist(Ty1(τ̃(x1), Ty1(τ̃(y1))) + dist(Tx1(τ̃(x1), Ty1(τ̃(x1)))

= dist(τ̃(x1), τ̃(y1))) + dist(τ̃(x1), T
−1
x1

Ty1(τ̃(x1))).

Since T depends Hölder continuously on the base point, and τ̃ is bounded,

dist(τ̃(x), τ̃(y)) ≤ dist(τ̃(x1), τ̃(y1))) + K1 · dist(x1, y1)
α.

As the leaves of the strong stable foliation are contracted exponentially, we obtain
by induction that

dist(τ̃(x), τ̃(y)) ≤ dist(τ̃(xn), τ̃(yn)) +
n∑

i=1

K1 · dist(xi, yi)
α

≤ dist(τ̃(xn), τ̃(yn)) + K1K2 · dist(x, y)α,

where K1K2 = Kss is a constant independent of x, y, and n.
Since the flow ϕt is topologically mixing, there exists the Bowen-Margulis measure

µ on M. This measure has full support, and is mixing with respect to the flow and
its time-one map.

Since the conformal structure τ̃ is measurable, it is uniformly continuous on a set
A ⊂ M with µ(A) > 1/2. It follows from the Birkhoff ergodic theorem that the set
of points for which the frequency of visiting A equals µ(A) has full measure. We
denote this set by G. If both x and y are in G, then there exists a sequence (nk)
such that xnk

∈ A and ynk
∈ A. If in addition x and y lie on the same strong stable

leaf, then dist(xnk
, ynk

) → 0, and hence dist(τ̃(xnk
), τ̃(ynk

)) → 0. Thus, we obtain

dist(τ̃(x), τ̃(y)) ≤ Kss · dist(x, y)α.

By a similar argument, dist(τ̃(x), τ̃(z)) ≤ Ksu ·dist(x, z)α for any two nearby points
x, z ∈ G lying on the same strong unstable leaf. Since τ̃ is invariant under the flow,
it follows that dist(τ̃(x), τ̃(z)) ≤ Ku · dist(x, z)α for any two nearby points x, z ∈ G
on the same weak unstable leaf.

Consider a small open set in M with a product structure. For almost all local
strong stable leaves, the set of points of G on the leaf has full conditional measure.
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Consider points x, y ∈ G lying on two such strong stable leaves. Let Hx,y be the weak
unstable holonomy map between W ss(x) and W ss(y). Since the Bowen-Margulis
measure is invariant under holonomy maps, there exists a point z ∈ W ss(x) ∩ G
close to x such that Hx,y(z) is also in G. By the above argument,

dist(τ̃(x), τ̃(z)) ≤ Kss · dist(x, z)α,

dist(τ̃(z), τ̃(Hx,y(z))) ≤ Ku · dist(z, Hx,y(z))α, and

dist(τ(Hx,y(z)), τ(y)) ≤ Kss · dist(Hx,y(z), y)α.

Since the points x, y, and z are close, it is clear from the local product structure
that

dist(x, z)α + dist(z, Hx,y(z))α + dist(Hx,y(z), y)α ≤ K̃ · dist(x, y)α.

Hence, we obtain dist(τ̃(x), τ̃(y)) ≤ KK̃ · dist(x, y)α.
So τ̃ is Hölder continuous on a set B of full measure. We can assume that B is

invariant by considering
⋂∞

n=−∞ fn(B). Since B is dense, we can extend τ̃ from B
and obtain an invariant Hölder continuous conformal structure τ on M. �

Remark 3.2. The proof works if we start with a measurable conformal structure
which is essentially bounded with respect to the Bowen-Margulis measure or the
absolutely continuous invariant measure.

To show that the conformal structure τ constructed in Proposition 3.2 is smooth
along the strong unstable leaves we use the following corollary of Proposition 4.1
(see Section 4).

Proposition 3.3. Let f be a uniformly u-quasiconformal Anosov diffeomorphism
of a compact manifold M. Then for any x ∈ M there exists a C∞ diffeomorphism
hx : W u(x) → Eu(x) such that

(i) hfx ◦ f = dfx ◦ hx,

(ii) hx(x) = 0 and (dhx)x is the identity map,

(iii) hx depends continuously on x in C∞ topology.

Let ϕt be a uniformly u-quasiconformal Anosov flow on a compact manifold M. Then
for any x ∈ M there exists a C∞ diffeomorphism hx : W su(x) → Esu(x) satisfying

(i′) hϕ1x ◦ ϕ1 = dϕ1
x ◦ hx, and (ii), (iii) as above.

Recall that τ is a continuous invariant conformal structure on the strong unstable
distribution. Now we show that τ is actually C∞ along the leaves. For each x ∈ M

we extend the conformal structure τ(x) at 0 ∈ Esu(x) to all other points of Esu(x)
via translations. We denote this constant (translation-invariant) conformal structure
on Esu(x) by σ. Since the conformal structure τ is ϕt-invariant, σ is dϕt-invariant.

For any map g and conformal structure ρ(x) at a point x ∈ M, we denote by
g(ρ(x)) the push forward of ρ(x) to the point g(x).
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Lemma 3.1. The map hx takes τ on W su
x into σ on Esu(x), and hence τ is C∞

along the strong unstable leaves.

Proof. We need to show that for any y ∈ W su(x), hx(τ(y)) = σ(hx(y)). To do this
we flow back in time. First we note that for any ε > 0 there exists n > 0 such that

dist (hϕ−nx(τ(ϕ−ny)), σ(hϕ−nx(ϕ
−n(y))) < ε.

Indeed, it follows from Proposition 3.3 (iii) that the restrictions of the derivative
of hx to the ball of radius 1 around x in W su(x), x ∈ M, form an equicontinuous
family. Hence if ϕ−ny is sufficiently close to ϕ−nx, then dhϕ−nx(ϕ

−ny) is close to
dhϕ−nx(ϕ

−nx), which is identity. Thus, hϕ−nx(τ(ϕ−ny)) is close to hϕ−nx(τ(ϕ−nx)),
and by definition of σ,

hϕ−nx(τ(ϕ−nx)) = σ(hϕ−nx(ϕ
−nx)) = σ(hϕ−nx(ϕ

−ny)).

To obtain the following equalities, we note that dϕn induces an isometry between
the spaces of conformal structures, τ is ϕ-invariant, σ is dϕ-invariant, and hx(y) =
dϕn(hϕ−nx(ϕ

−n(y)) by Proposition 3.3 (i′). Thus,

ε > dist ( hϕ−nx(τ(ϕ−ny)), σ(hϕ−nx(ϕ
−n(y)) )

= dist ( dϕn(hϕ−nx(τ(ϕ−ny))), dϕn(σ(hϕ−nx(ϕ
−n(y))) )

= dist ( dϕn(hϕ−nx(ϕ
−n(τ(y))), σ(dϕn(hϕ−nx(ϕ

−n(y))) )

= dist ( hx(τ(y)), σ(hx(y)) ).

As the above holds for any ε > 0, it follows that hx(τ(y)) = σ(hx(y)).
Since the conformal structure σ is constant on Esu(x) and hx is a C∞ diffeomor-

phism, we conclude that τ is C∞ along the strong unstable leaves. �

Thus, we obtained an invariant conformal structure on the strong unstable distri-
bution which is continuous on M and C∞ along the strong unstable leaves. Since a
conformal structure is a class of proportional inner products, we normalize it using
a C∞ function on M to obtain a Riemannian metric. So we have constructed a Rie-
mannian metric on the strong unstable distribution with respect to which the flow
is u-conformal. This metric is Hölder continuous on M and C∞ along the strong
unstable leaves.

3.2. Proof of Theorem 1.4. First we show that for a uniformly u-quasiconformal
Anosov system the (weak) unstable distribution is C1. This result seems to be well-
accepted, however, due to the lack of precise reference, we indicate how it can be
obtained using an argument in [6].

Proposition 3.4. Let f (ϕt) be a uniformly u-quasiconformal Anosov diffeomor-
phism (flow) on a compact manifold M. Then the (weak) stable distribution is C1.

Proof. In Section 4 of [6] M. Hirsch and C. Pugh proved, using the Cr section the-
orem, that the strong stable distribution is C1 for the geodesic flow on a negatively
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curved surface. As easily follows from the remark at the end of their proof, the argu-
ment works in higher dimension for a contact u-conformal Anosov flow. Now, using
Theorem 1.3 we conclude that the same result holds for a uniformly u-quasiconformal
contact Anosov flow (this can also be seen more directly by considering time-t map
for sufficiently large t). Clearly, the argument works for the case of a uniformly
u-quasiconformal Anosov diffeomorphism. For the case of flow a slight modification
of the argument is needed since we don’t assume that the flow is contact, and while
Eu is C1, Esu is not necessarily smooth.

Consider the bundle E = Esu ⊕ Ess. Since E is Hölder continuous, we can
approximate it by a smooth bundle Ẽ. Let Êsu = Ẽ ∩ (Esu ⊕ RX), Êss =
Ẽ ∩ (Ess ⊕ RX), and let Ẽsu and Ẽss be smooth subbundles of Ẽ approximating

Êsu and Êss respectively.
Since Ẽ is not invariant, instead of dϕ1 we consider the map T : Ẽ → Ẽ, Tx =

πϕ1x ◦ dϕ1
x, where πϕ1x is the projection of the tangent space at ϕ1x onto Ẽϕ1x along

the flow direction. As in section 4 of [6], one can see that Êsu is of class C1. Hence

the weak stable distribution Eu = Esu ⊕ RX = Êsu ⊕ RX is also of class C1. �

We prove Theorem 1.4 for the case of flow. We denote by τ the conformal structure
associated with the metric given in the theorem.

Let x, y be two nearby points in M. Consider the local holonomy map Hx,y :
W su(x) → W su(y) along the weak stable foliation: z ∈ W su(x) 7→ Hx,y(z) =
W su(y) ∩W s(z).

First we show that the local holonomy maps Hx,y are conformal. Since the weak
stable distribution is C1, the holonomy maps are uniformly C1 ([12]). We will show
that Hx,y preserves the conformal structure τ , i.e. Hx,y(τ(z)) = τ(z1), where z1 =
Hx,y(z). Let z2 = ϕt0(z) be the point on W ss(z1) with the smallest |t0|. Then Hx,y =
Hz2,z1 ◦Hz,z2 , moreover, Hz,z2 = ϕt0 . Since ϕt preserves the conformal structure, it
suffices to show that Hz2,z1(τ(z2)) = τ(z1). Note that Hz2,z1 = ϕ−t ◦Hϕtz2,ϕtz1 ◦ ϕt.
Since z2 ∈ W ss(z1), ϕtz1 is close to ϕtz2 for large t, and hence dHϕtz2,ϕtz1 is close to
identity. Since τ is continuous, τ(ϕtz2) is close to τ(ϕtz1). Thus, Hϕtz2,ϕtz1(τ(ϕtz2))
is close to τ(ϕtz1). Since ϕ−t induces an isometry between the spaces of conformal
structures on Esu(ϕtz1) and on Esu(z1), we conclude that Hz2,z1(τ(z2)) is close to
τ(z1). By letting t → ∞, we can see that Hz2,z1 takes τ(z2) into τ(z1). Thus we
conclude that the map Hx,y is conformal.

Next we show that the maps Hx,y are uniformly C∞, i.e. they are C∞ and
their derivatives depend continuously on y. Fix x ∈ M, and let y be a point in a
neighborhood U of x. Let gy : Esu(y) → Rn be a linear map which takes the metric
on Esu(y) into the standard metric on Rn. Clearly, gy can be chosen in such a way
that it depends continuously on y in U . Consider the map

Gx,y = gy ◦ hy ◦Hx,y ◦ h−1
x ◦ g−1

x : V → Rn,
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where V is an open set in Rn containing 0, and hx is the map defined in Proposi-
tion 3.3. Since Gx,y : V → Rn is a conformal C1 diffeomorphism, it is C∞. Indeed,
if n > 2, it is Möbius, and if n = 2 it is complex analytic. Then it also follows
that that as the maps Gx,y depend continuously on y, they depend continuously on
y in C∞ topology. Since gy are linear maps that depend continuously on y, they
also depend continuously on y in C∞ topology, and so does hy by Proposition 3.3.
Hence, Hx,y depends continuously on y in C∞ topology.

Lemma 3.2. If the weak stable holonomies are uniformly C∞ (in the sense described
above), then the weak stable distribution is C∞.

This statement is similar to Theorem 6.1 (ii) in [12], however in the theorem the
holonomies are considered between the leaves of some smooth transverse foliation,
while in our case the strong unstable foliation is not necessarily smooth.

Proof. As above, we fix a point x ∈ M and consider a neighborhood U of x. We
choose a C∞ coordinate chart Φ : U → Rm×Rn such that Φ(x) = 0, Φ(W s(x)∩U) ⊂
Rm, and Φ(W su(x) ∩ U) ⊂ Rn. Let p = (y, z) ∈ Rm × Rn. Consider the map

Ψ(p) = (y, W s(p) ∩W su(0)) = (y, Hp,0(p)).

This map straightens the leaves of the weak stable foliation. Since the leaves of
the weak stable foliation are uniformly C∞, the function Ψ is uniformly C∞ on
these leaves. Since the weak stable holonomy maps are uniformly C∞, as well as
the leaves of the strong unstable foliation, Ψ is uniformly C∞ on the leaves of the
strong unstable foliation. Now it follows from the theorem established by Journé in
[7] that Ψ is C∞. This implies that the weak stable foliation (and the weak stable
distribution) is C∞. �

This completes the proof of Theorem 1.4.

3.3. Proof of Theorems 1.1 and 1.2. Let f (ϕt) be a uniformly u-quasiconformal
Anosov diffeomorphism (flow). Above we established that it is u-conformal with
respect to some Riemannian metric on the (strong) unstable distribution, and that
the (weak) stable distribution is C∞.

Now we assume that the flow is contact (the diffeomorphism is symplectic). The
next statement shows that in this case the diffeomorphism (flow) is also s-conformal,
i.e. it is conformal. This was observed by M. Kanai in [8] for contact flows. We
include the argument for the sake of completeness.

Lemma 3.3. If a symplectic Anosov diffeomorphism (a contact Anosov flow) is u-
conformal with respect to some continuous Riemannian metric on Eu (Esu), then it
is s-conformal with respect to some continuous Riemannian metric on Es (Ess).

Proof. We present the proof for the case of flow. Similar argument works for the
case of diffeomorphism.
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The Riemannian metric on the unstable bundle Esu induces the dual metric on its
dual bundle (Esu)∗. The conformal structure on (Esu)∗ associated with this metric
is invariant under (dϕt)∗.

Let θ be the contact form on M. Then the restriction of its exterior derivative
dθ to the subbundle E = Esu ⊕ Ess is a symplectic form on E. The splitting of E
into Esu and Ess is Lagrangian for dθ, that is dθ(v1, v2) = 0 for any v1, v2 ∈ Esu,
dθ(w1, w2) = 0 for any w1, w2 ∈ Ess, and dim Esu = dim Ess. Therefore, the natural
map from Ess to (Esu)∗: w 7→ f(v) = dθ(v, w) is an isomorphism. Thus, the
above metric on (Esu)∗ induces a continuous metric on Ess. Since θ is invariant,
the associated conformal structure on Ess is also invariant. Thus, the flow is s-
conformal. �

It is known that symplectic Anosov diffeomorphisms and contact Anosov flows
are topologically mixing. Now it is clear that Theorems 1.3 and 1.4 imply that for a
uniformly u-quasiconformal symplectic Anosov diffeomorphism f (contact Anosov
flow ϕt) both (weak) stable and (weak) unstable distributions are C∞.

Note that for a contact flow the distribution Esu (Ess) is smooth if and only if
Eu (Es) is smooth, since Esu = Eu∩ker θ (Ess = Es∩ker θ), where θ is the contact
form.

For the case of diffeomorphism, the result in [3] implies that f is C∞-conjugate
to an Anosov automorphism of an infranilmanifold. Since the diffeomorphism is
uniformly quasiconformal, the corresponding nilpotent group has to be abelian. In-
deed, if the group is not abelian, then the Anosov automorphism must have at least
two unstable Lyapunov exponents and thus can not be uniformly quasiconformal.
Since the group is abelian the infranilmanifold is finitely covered by a torus.

For the case of flow, it follows from Theorem 1 in [2] that that ϕt is essentially
C∞ conjugate (in the sense described in Theorem 1.2) to the geodesic flow of a
locally symmetric manifold of strictly negative curvature. Proposition 3.5 below
implies that the geodesic flow on this locally symmetric manifold has to be uniformly
quasiconformal, and hence the manifold has constant negative curvature. Indeed,
the geodesic flow of a locally symmetric manifold of non-constant strictly negative
curvature has more than one unstable Lyapunov exponent, and thus it can not be
uniformly quasiconformal.

This completes the proof of Theorems 1.1 and 1.2.

3.4. Smooth time changes. In Theorem 1.2 we assumed that the flow is contact.
The next proposition shows that this assumption can not be omitted since any
smooth time change of a uniformly u-quasiconformal Anosov flow is also uniformly
u-quasiconformal. Note that any smooth time change of an Anosov flow is also
Anosov.
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Proposition 3.5. Let ϕt be a uniformly u-quasiconformal Anosov flow on a compact
manifold M, and let ϕ̃t be its smooth time change. Then ϕ̃t is also uniformly u-
quasiconformal.

Proof. Fix a Riemannian metric on M. Note that the orbits of ϕt and of ϕ̃t are the
same, and their weak unstable distributions Eu and Ẽu are also the same. Denote
by Esu and Ẽsu the strong unstable distributions of ϕt and ϕ̃t respectively. Since M

is compact, and both Esu and Ẽsu are transversal to the flow direction in Eu = Ẽu,
the angle they form with each other is bounded above by some α < π/2.

We will show that the quasiconformal distortion of ϕ̃t, K̃(t, x), is uniformly
bounded for all x ∈ M and t ∈ R. Fix x ∈ M and t ∈ R. Consider a sphere
S̃su(x, r) in W̃ su(x) of a small radius r. We estimate the distortion of S̃su(x, r)
under the action of ϕ̃t. We can choose r0 > 0 such that for all r, 0 < r < r0,

(i) The image of S̃su(x, r) as we pass from W̃ su(x) to W su(x) along the flow
direction lies between two concentric spheres of radii k1r < k2r, where k1 and k2 are
constants depending only on the maximal angle Esu and Ẽsu can form.

(ii) The distortion of Ssu(x, k2r) under the flow ϕt from W su(x) to W su(ϕ̃tx) is
at most 2K, where Ssu(x, k2r) is the sphere of radius k2r in W su(x) centered at x,
and K is an upper bound for the quasiconformal distortion of ϕt.

(iii) The image of Ssu(ϕ̃tx, ρ)) as we pass from W su(ϕ̃tx) to W̃ su(ϕ̃tx) along the
flow direction lies between two concentric spheres of radii k1ρ < k2ρ, for all ρ,
0 < ρ < k3, where k3 is the diameter of the image of Ssu(x, k2r0) under the flow ϕt

from W su(x) to W su(ϕ̃tx).
Then it is easy to see that the distortion of S̃su(x, r) under the action of ϕ̃t is at

most 2K(k2/k1)
2 for all r, 0 < r < r0. Therefore K̃(t, x) ≤ 2K(k2/k1)

2. �

We note that while any smooth time change of a conformal Anosov flow is uni-
formly quasiconformal, it is not necessarily conformal.

4. Non-stationary Linearization

In this section we prove a statement on non-stationary linearization. We used a
corollary of this statement in the proofs of Theorems 1.3 and 1.4.

Our result is similar to the special case of 1/2 pinching in the theorem on non-
stationary normal forms established by A. Katok and M. Guysinsky in [5] and
[4]. However, we obtain the statement under a weaker assumption which can be
interpreted as a relative or pointwise 1/2 pinching. In particular, this allows us to
apply it to uniformly quasiconformal systems. Our statement can also be viewed as
a generalization of a one-dimensional result established by A. Katok and J. Lewis
in [11]. Our proof closely follows the corresponding steps of the proof in [11].
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Proposition 4.1. Let f be a diffeomorphism of a compact Riemannian manifold
M, and let W be a continuous invariant foliation with C∞ leaves. Suppose that
‖df |TW‖ < 1, and there exist C > 0 and ε > 0 such that for any x ∈ M and n ∈ N,

‖ (dfn|TxW )−1 ‖ · ‖ dfn|TxW ‖2 ≤ C(1− ε)n. (4.1)

Then for any x ∈ M there exists a C∞ diffeomorphism hx : W (x) → TxW such that
(i) hfx ◦ f = dfx ◦ hx,
(ii) hx(x) = 0 and (dhx)x is the identity map,
(iii) hx depends continuously on x in C∞ topology.

Remark 4.1. In the statement, C(1− ε)n can be replaced by an such that
∑∞

i=1 an

converges. The proof works for this case without modifications.

Proof. First we establish uniqueness.

Lemma 4.1. The family h of maps hx satisfying (i), (ii), and (iii) is unique.

Proof. Suppose h̃ is another family of maps satisfying (i)-(iii). Then the family of

maps l = h ◦ h̃−1 satisfies lf(x) ◦ dfx = dfx ◦ lx, and hence

lx = (dfx)
−1 ◦ lfx ◦ dfx = · · · = (dfn

x )−1 ◦ lfnx ◦ dfn
x .

By the conditions (ii) and (iii), for any v ∈ TxW , lx(v) = v+rx(v), where ‖ rx(v) ‖ ≤
K‖v‖2. Therefore,

lx(v) = (dfn
x )−1(dfn

x (v) + rfnx(df
n
x (v))) = v + (dfn

x )−1(rfnx(df
n
x (v))),

and ‖ (dfn
x )−1(rfnx(df

n
x (v))) ‖ ≤ ‖ (dfn

x )−1 ‖ · K‖ dfn
x (v) ‖2 ≤ KC(1 − ε)n. Thus,

‖lx(v) − v‖ ≤ KC(1 − ε)n for any n ∈ N. This implies that lx(v) = v for any

v ∈ TxW and hence h = h̃. �

Our next goal is to obtain a formal power series for hx.
Let us fix a small tubular neighborhood V of the zero section in TW such that for

each x in M, we can identify the open set Vx = V ∩TxW in TxW with a neighborhood
of x in the leaf W (x) using the exponential map. The size of this neighborhood can
be chosen the same for all x ∈ M.

Thus we can view the diffeomorphism f as a family of maps f |Vx from Vx ⊂ TxW
to Vfx ⊂ TfxW . For each x ∈ M we write the (formal) Taylor series of f |Vx at
0 ∈ TxW : for v ∈ Vx

f |Vx(v) =
∞∑

n=1

P n
x (v),

where P n
x (v1, . . . , vn) is an n-linear form on TxW with values in TfxW , and P n

x (v)
stands for P n

x (v, . . . , v). Note that P 1
x (v) = dfx(v). Similarly, we write hx(v) as a

formal series

hx(v) =
∞∑

n=1

Qn
x(v).
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To satisfy the condition (ii), we set Q1 to be the identity map.
We solve for the functions Qn inductively using the commutation relation

hfx(fx(v)) = dfx(hx(v)).

Suppose that we have obtained continuous functions for Qk, 1 ≤ k ≤ n − 1. Com-
paring the homogeneous terms of degree n in the equality

∞∑
n=1

Qn
fx

(
∞∑

n=1

P n
x (v)

)
= dfx

(
∞∑

n=1

Qn
x(v)

)
,

we obtain
Qn

fx(P
1
x (v)) + Rx(v) = dfx(Q

n
x(v)),

where Rx involves only Qi, 1 < i < n, and P i, 1 < i ≤ n, and thus it is a continuous
function on M. Hence

Qn
x(v) = df−1

x (Rx(v)) + df−1
x ◦Qn

fx(P
1
x (v)) = df−1

x (Rx(v))+

+ df−1
x [df−1

fx (Rfx(P
1
x (v))) + df−1

fx ◦Qn
f2x(P

1
fx(P

1
x (v)))]

= df−1
x (Rx(v)) + (df2

x)−1 ◦Rfx(dfx(v)) + (df2
x)−1 ◦Qn

f2x(df
2
x(v))

= · · · =
∞∑
i=1

(df i
x)
−1 ◦Rf i−1x(df

i−1
x (v))

To show that the series converges uniformly on M, we estimate the norm of each
term. Recall that the norm of a k-linear map P is

‖P‖ = sup{ ‖P (v1, . . . , vk)‖ : ‖vj‖ = 1, 1 ≤ j ≤ k },
and ‖P (P1, . . . Pk) ‖ ≤ ‖P‖ · ‖P1‖ · · · ‖Pk‖. Thus,

‖ (df i
x)
−1 ◦Rf i−1x ◦ df i−1

x ‖
≤ ‖ (df i−1

x )−1 ‖ · ‖ df−1
f ix
‖ · ‖Rf i−1x ‖ · ‖ df i−1

x ‖n ≤ KC(1− ε)i−1,

since ‖ df−1
f ix
‖ and ‖Rf i−1x ‖ are uniformly bounded on M, and

‖ (df i−1
x )−1 ‖ · ‖ df i−1

x ‖n ≤ C(1− ε)i−1

by (4.1). So the series converges uniformly, and hence Qn is a continuous function
on M.

For the rest of the proof, we only need to assume that f |W is a contraction.

By a parametric version of Proposition 6.6.3 in [9] there exists a family of smooth

functions h̃x in a neighborhood of the zero section with the above Taylor approxi-
mation at 0, which depend continuously on x in C∞ topology.

The next step is to obtain a family h of Ck-functions hx which satisfy, in a
neighborhood of the zero section, the conditions (i), (ii), and

(iii′) hx depends continuously on x in Ck-topology.
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Recall that we fixed a small tubular neighborhood V of the zero section in TW and
for each x in M we identified the open set Vx = V ∩TxW in TxW with a neighborhood
of x in the leaf W (x) using the exponential map. Since V has compact closure we
can define

S = max{ ‖dfy‖ : y ∈ V }, s = max{ ‖df−1
y ‖ : y ∈ V },

which satisfy 0 < s−1 ≤ S < 1. Here dfy for y ∈ Vx denotes the derivative at
point y of the map f |Vx from Vx ⊂ TxW to Vfx ⊂ TfxW obtained by the above
identification.

Let k be an integer such that k > log s−1/ log S. We denote by Bk
V the space

whose elements are families R of Ck functions Rx : Vx → TxW such that Rx depends
continuously on x in Ck topology. Let also Ak

V ⊂ Bk
V be the subspace of families R

for which Rx vanishes to order k at every x ∈ M, i.e. all terms R1
x,0, . . . , R

k
x,0 in the

Taylor expansion of Rx at 0 ∈ TxW vanish.
For any x ∈ M and y ∈ Vx we define Ri

x,y to be the ith term in the Taylor expansion

of Rx at y. For R ∈ Bk
V and 0 ≤ i ≤ k we set

‖R‖i
V = sup{ ‖Ri

x,y‖ : x ∈ M, y ∈ Vx }.
Since the derivatives of orders 0 ≤ i ≤ k − 1 can be inductively estimated in terms
of the kth derivative and the size of the neighborhood, for any δ > 0 there exists a
neighborhood V δ ⊂ V of the zero section such that

‖R‖0
V δ + ‖R‖1

V δ + ‖R‖k−1
V δ ≤ δ‖R‖k

V δ (4.2)

for every R ∈ Ak
V .

We define the operator Φ : Bk
V → Bk

V as follows: for any x in M and y ∈ Vx,

(ΦR)x(y) = (dfx)
−1 ◦Rfx ◦ f(y).

Lemma 4.2. There exists δ > 0 such that the map Φ is a contraction on the
neighborhood V δ ⊂ V of the zero section, i.e. for some λ < 1,

‖ΦR‖k
V δ ≤ λ‖R‖k

V δ for every R ∈ Ak
V δ .

Proof. To estimate ‖ΦR‖k
V δ , we first calculate the term of order k, Lk

y, in the Taylor
approximation of Rfx ◦ f : Vx → Vfx at y ∈ Vx. For v ∈ Vx,

Rfx(f(v)) ≈
k∑

i=0

Li
y(v) ≈

k∑
i=0

Ri
fx,fy(f(v)) =

k∑
i=0

Ri
fx,fy

(
∞∑

j=0

P j
y (v)

)
.

Hence Lk
y(v) = Rk

fx,fy(P
1
y (v)) + Ny(v), where Ny is a sum of compositions of Ri,

i < k, with P i, i ≤ k. Since the functions P i are uniformly bounded, it follows
from (4.2) that ‖Ny‖ ≤ Mδ‖R‖k

V δ for every y ∈ V δ. And since P 1
y = dfy, it

follows from the definition of S that ‖Rk
fx,fy(P

1
y (v))‖V δ ≤ Sk‖R‖k

V δ . Hence, ‖Lk
y‖ ≤

(Sk‖R‖k
V δ + δ‖R‖k

V δ).
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The kth term in the Taylor approximation of (ΦR)x at y ∈ Vx equals (dfx)
−1(Lk

y),
and hence

‖ΦR‖k
V δ ≤ (sup

x
‖df−1

x ‖) · ‖Lk
y‖ ≤ s(Sk‖R‖k

V δ + δ‖R‖k
V δ) = s(Sk + δ)‖R‖k

V δ .

Since k > log s−1/ log S, it follows that sSk < 1, and we can choose δ small enough
so that

λ = s(Sk + Mδ) < 1.

�

Recall that h̃ is a family of functions h̃x with the desired derivatives at the zero
section. It easily follows from the definition of Φ that Φh̃ − h̃ ∈ Ak

V . Since Φ is a
contraction on Ak

V δ , the sequence

hn = Φnh̃ =
n−1∑
i=0

Φi(Φh̃− h̃) + h̃

converges uniformly on V δ with respect to the norm ‖ · ‖k
V δ to some family h ∈ Bk

V δ .

Hence h satisfies (iii′). As Φ(h) = h, it follows that h satisfies (i). Since h̃ satisfies

(ii), and h− h̃ ∈ Ak
V δ , in particular, the first derivative of h− h̃ vanishes at the zero

section, we conclude that h also satisfies (ii).
Since f |W is a contraction, we can extend h from V δ to W as follows. For y ∈ Wx

we take n such that fn(y) ∈ V δ
fnx and set

hx(y) = (dfx)
−n ◦ hfx ◦ fn(y).

Clearly, h satisfies (i), (ii), and (iii′). Since we can obtain such a solution h for any
k > log s−1/ log S, and h is unique, hx is C∞ for every x ∈ M. This completes the
proof of Proposition 4.1. �
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