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Abstract. We consider Hölder continuous fiber bunched GL(d,R)-valued cocycles
over an Anosov diffeomorphism. We show that two such cocycles are Hölder continu-
ously cohomologous if they have equal periodic data, and prove a result for cocycles
with conjugate periodic data. We obtain a corollary for cohomology between any
constant cocycle and its small perturbation. The fiber bunching condition means
that non-conformality of the cocycle is dominated by the expansion and contraction
in the base. We show that this condition can be established based on the periodic
data. Some important examples of cocycles come from the differential of the diffeo-
morphism and its restrictions to invariant sub-bundles. We discuss an application of
our results to the question when an Anosov diffeomorphism is smoothly conjugate to
a C1-small perturbation. We also establish Hölder continuity of a measurable con-
jugacy between a fiber bunched cocycle and a uniformly quasiconformal one. Our
main results also hold for cocycles with values in a closed subgroup of GL(d,R), for
cocycles over hyperbolic sets and shifts of finite type, and for linear cocycles on a
non-trivial vector bundle.

1. Inroduction

Cocycles and their cohomology arise naturally in the theory of group actions and
play an important role in dynamics. In this paper we study cohomology of Hölder
continuous group-valued cocycles over hyperbolic dynamical systems. Our motivation
comes in part from questions in local and global rigidity for hyperbolic systems and
actions, where the derivative and the Jacobian provide important examples of cocycles.
We state our results for the case of an Anosov diffeomorphism, but they also hold for
cocycles over hyperbolic sets and symbolic dynamical systems.

Definition 1.1. Let f be a diffeomorphism of a compact manifold M and let A be a
Hölder continuous function from M to a metric group G. The G-valued cocycle over
f generated by A is the map A :M× Z→ G defined by

A(x, 0) = A0
x = eG, A(x, n) = An

x = A(fn−1x) ◦ · · · ◦ A(x) and

A(x,−n) = A−nx = (An
f−nx)

−1 = (A(f−nx))−1 ◦ · · · ◦ (A(f−1x))−1, n ∈ N.

If the tangent bundle ofM is trivial, i.e. TM =M×Rd, then the differential Df can
be viewed as a GL(d,R)-valued cocycle: Ax = Dfx and An

x = Dfnx . More generally,
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one can consider restrictions of Df to invariant sub-bundles of TM, for example stable
and unstable. Typically, these sub-bundles are only Hölder continuous, and hence so
are the corresponding cocycles. On the other hand, Hölder regularity is necessary to
develop a meaningful theory for cocycles over hyperbolic systems, even in the simplest
case of G = R.

Definition 1.2. Cocycles A and B are (measurably, continuously) cohomologous if
there exists a (measurable, continuous) function C :M→ G such that

(1.1) An
x = C(fnx) ◦Bn

x ◦ C(x)−1 for all n ∈ Z and x ∈M,

equivalently, Ax = C(fx) ◦Bx ◦ C(x)−1 for all x ∈M.
We refer to C as a conjugacy between A and B. It is also called a transfer map.

Hölder continuous cocycles over hyperbolic systems have been extensively studied
starting with the seminal work of A. Livšic [Liv71, Liv72]. The research has been
focused on obtaining sufficient conditions for cohomology in terms of the periodic data
and on studying the regularity of the conjugacy C, see [KtN] for an overview.

Definition 1.3. Cocycles A and B have conjugate periodic data if for every periodic
point p = fn(p) in M there exists C(p) ∈ G such that

(1.2) An
p = C(p) ◦Bn

p ◦ C(p)−1.

Clearly, having conjugate periodic data is a necessary condition for continuous co-
homology of two cocycles, and it is natural to ask whether it is also sufficient. If G
is an abelian group, the problem reduces to the case when B is the identity cocycle,
i.e. Bx = eG, and the periodic assumption is simply An

p = eG. The positive an-
swer for this case was given by A. Livšic [Liv71]. Even for non-abelian G, the case
of B = eG has been studied most and by now is relatively well understood, see for
example [Liv72, NT95, PW01, LW10, K11].

For non-abelian G, however, the general problem does not reduce to the special case
B = eG and is much more difficult. There are very few results for non-abelian groups,
and almost none beyond the essentially compact case. Even when C(p) is bounded the
answer is negative in general [S13]. If C(p) is Hölder, conjugating B by the extension of
C reduces the problem to the case of equal periodic data, i.e. An

p = Bn
p . Positive results

for equal periodic data, as well as some results for conjugate data, were established by
W. Parry [Pa99] for compact G and, somewhat more generally, by K. Schmidt [Sch99]
for cocycles with “bounded distortion”. First results outside this setting were obtained
in [S13] for certain types of GL(2,R)-valued cocycles.

In this paper we consider fiber bunched cocycles with values in GL(d,R) or its
closed subgroup. We establish Hölder cohomology for cocycles with equal periodic data
and prove a result for cocycles with conjugate periodic data under a mild regularity
assumption on C(p). The fiber bunching condition (2.2) means that non-conformality
of the cocycle is, in a sense, dominated by expansion and contraction in the base.
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In particular, conformal and uniformly quasiconformal cocycles satisfy this condition.
Fiber bunching and similar assumptions ensure convergence of certain iterates of the
cocycle and play a crucial role in the non-commutative case. We show that fiber
bunching can be obtained from the periodic data, and hence we assume it for only one
of the cocycles. We obtain a corollary for perturbations of any constant cocycle, not
necessarily fiber bunched.

We also consider a related question whether a measurable solution C of (1.1) is
necessarily continuous. Even the case of B = eG remains open in full generality, but
positive answers were obtained under additional assumptions [Liv72, GSp97, NP99,
PW01]. The case of two arbitrary cocycles with values in a compact group was resolved
affirmatively by W. Parry and M. Pollicott [PaP97], and by K. Schmidt [Sch99] for
cocycles with “bounded distortion”. Positive results for certain types of GL(2,R)-
valued cocycles were obtained in [S13]. On the other hand, examples ofGL(2,R)-valued
cocycles which are measurably but not continuously cohomologous were constructed
in [PW01], moreover both cocycles can be made arbitrarily close to the identity. This
shows that fiber bunching of the cocycles does not ensure continuity of C. In this paper
we establish Hölder continuity of a measurable conjugacy under a stronger assumption
that one cocycle is fiber bunched and the other one is uniformly quasiconformal. For
smooth cocycles, higher regularity of the conjugacy then follows from [NT98].

We state the results on cohomology of cocycles in Section 2 and and give the proofs
in Section 4. We describe other settings for our results in Section 3. In Section 5 we
discuss an application to the question when an Anosov diffeomorphism is smoothly
conjugate to a C1-small perturbation.

We would like to thank Boris Kalinin for helpful discussions.

2. Statement of results on cohomology of cocycles

Anosov diffeomorphisms. Let M be a compact connected Riemannian manifold.
We recall that a diffeomorphism f of M is called Anosov if there exist a splitting of
the tangent bundle TM into a direct sum of two Df -invariant continuous subbundles
Es and Eu, a Riemannian metric on M, and continuous functions ν and ν̂ such that

(2.1) ‖Df(vs)‖ < ν(x) < 1 < ν̂(x) < ‖Df(vu)‖

for any x ∈ M and unit vectors vs ∈ Es(x) and vu ∈ Eu(x). The distributions Es

and Eu are called stable and unstable. They are tangent to the stable and unstable
foliations W s and W u respectively (see, for example [KtH]). A diffeomorphism is said
to be transitive if there is a point x in M with dense orbit. All known examples of
Anosov diffeomorphisms have this property.

Standing assumptions. In this paper,
f is a C2 transitive Anosov diffeomorphism of a compact connected manifold M,
A and B are β-Hölder continuous GL(d,R)-valued cocycles over f .
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We denote by ‖A‖ the operator norm of the matrix A and we use the following
distance on GL(d,R): d(A,B) = ‖A−B‖+ ‖A−1 −B−1‖.

A GL(d,R)-valued cocycle A is β-Hölder continuous if there exist constant c such
that d(Ax,Ay) ≤ c dist(x, y)β for all x, y ∈M.

Definition 2.1. A β-Hölder continuous cocycle A over an Anosov diffeomorphism f is
fiber bunched if there exist numbers θ < 1 and L such that for all x ∈M and n ∈ N,

(2.2) ‖An
x‖ · ‖(An

x)−1‖ · (νnx )β < Lθn and ‖A−nx ‖ · ‖(A−nx )−1‖ · (ν̂−nx )β < Lθn,

where νnx = ν(fn−1x) · · · ν(x) and ν̂−nx = (ν̂(f−nx))−1 · · · (ν̂(f−1x))−1.

First we establish Hölder cohomology for cocycles with equal periodic data.

Theorem 2.2. Suppose that a cocycle A is fiber bunched and a cocycle B has the
same periodic data, i.e. Bn

p = An
p whenever fn(p) = p. Then A and B are β-Hölder

continuously cohomologous. Moreover, if A and B take values in a closed subgroup of
GL(d,R), then a β-Hölder continuous conjugacy between them can be chosen in the
same subgroup.

In this theorem we assume fiber bunching only for A, as for B it follows from the
proposition below. We give a necessary and sufficient condition for a cocycle to be
fiber bunched in terms of its periodic data in Corollary 4.2.

Proposition 2.3. Suppose that a cocycle A is fiber bunched and B has conjugate
periodic data. Then B is also fiber bunched.

Now we consider the question whether conjugacy of the periodic data for two cocycles
implies cohomology. The case of Hölder congugacy of the periodic data easily reduces
to the case of equality. Indeed, one can extend the Hölder continuous function C(p)

to M and consider the cocycle B̃x = C(fx) ◦ Bx ◦ C(x) so that A and B̃ have equal

periodic data. By Theorem 2.2 the cocycles A and B̃ are Hölder cohomologous, and
hence so are A and B.

On the other hand, Example 2.7 in [S13] shows that boundedness assumption for the
conjugacy is too weak: arbitrarily close to the identity, there exist smooth GL(2,R)-
valued cocycles that have conjugate periodic data with C(p) uniformly bounded, but
are not even measurably cohomologous.

In the next theorem we assume that the diffeomorphism f has a fixed point. It is
an open question whether every Anosov diffeomorphism satisfies this assumption. We
obtain Hölder cohomology of the cocycles if C(p) is Hölder continuous at a fixed point.
If we assume that C(p) is Hölder continuous at a periodic point p = fNp, then the
theorem yields Hölder cohomology of the iterates AN and BN over fN .

Theorem 2.4. Suppose that A is fiber bunched and B has conjugate periodic data.
In addition, suppose that f has a fixed point p0 and the conjugacy C(p) is β-Hölder
continuous at p0, i.e. d(C(p), C(p0)) ≤ c dist(p, p0)β for every periodic point p.
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Then C(p0) extends to a unique β-Hölder continuous conjugacy C between A and B.
Moreover, if A, B, and C(p0) take values in a closed subgroup G0 of GL(d,R), then
C(x) ∈ G0 for all x.

The corollary below gives a similar result for a constant cocycle and its perturbation
without the fiber bunching assumption. The proof is outlined in the end of Section 5.

Corollary 2.5. Suppose that A is a constant cocycle, and B is sufficiently close to A

and has conjugate periodic data. In addition, suppose that f has a fixed point p0 and
C(p) is Hölder continuous at p0. Then A and B are Hölder continuously cohomologous.

Next we consider the question whether a measurable conjugacy between two fiber
bunched cocycles is continuous. An example in [PW01] demonstrates that the answer
is negative in general: arbitrarily close to the identity, there exist smooth GL(d,R)-
valued cocycles that are are measurably, but not continuously cohomologous. Thus we
make a stronger assumption that one of the cocycles is uniformly quasiconformal.

Definition 2.6. A cocycle B is called uniformly quasiconformal if the quasiconformal
distortion KB(x, n) = ‖Bn

x‖ · ‖(Bn
x)−1‖ is uniformly bounded for all x ∈M and n ∈ Z.

If KB(x, n) = 1 for all x and n, the cocycle is said to be conformal.

Theorem 2.7. Suppose that A is fiber bunched and B is uniformly quasiconformal.
Let µ be an ergodic invariant measure with full support and local product structure.

Then any µ-measurable conjugacy between A and B is β-Hölder continuous, i.e. it
coincides with a β-Hölder continuous conjugacy on a set of full measure.

A measure has local product structure if it is locally equivalent to the product of its
conditional measures on the local stable and unstable manifolds. Examples of ergodic
measures with full support and local product structure include the measure of maximal
entropy, more generally Gibbs (equilibrium) measures of Hölder continuous potentials,
and the invariant volume if it exists [PW01].

3. Other settings

Other systems in the base. Our results hold and the proofs apply without significant
modifications to GL(d,R) -valued cocycles over mixing locally maximal hyperbolic sets
and over mixing shifts of finite type. Mixing holds automatically for transitive Anosov
diffeomorphisms of connected manifolds. We briefly describe the other two settings.

1. Cocycles over hyperbolic sets. (See [KtH] for more details.) Let f be a
diffeomorphism of a manifoldM. A compact f -invariant set Λ ⊂M is called hyperbolic
if there exist a continuous Df -invariant splitting TΛM = Es ⊕Eu, and a Riemannian
metric and continuous functions ν, ν̂ on an open set U ⊃ Λ such that (2.1) holds for
all x ∈ Λ. A β-Hölder cocycle over the map f |Λ is fiber bunched if (2.2) holds on Λ.

The set Λ is called locally maximal if Λ =
⋂
n∈Z f

−n(U) for some open set U ⊃ Λ.
The map f |Λ is called topologically mixing if for any two open non-empty subsets U, V
of Λ there is N ∈ N such that fn(U) ∩ V 6= ∅ for all n ≥ N .
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2. Cocycles over shifts of finite type. Let Q be k × k matrix with entries from
{0, 1} such that all entries of QN are positive for some N . Let

Σ = {x = (xn)n∈Z | 1 ≤ xn ≤ k and Qxn,xn+1 = 1 for every n ∈ Z }.
The shift map σ : Σ→ Σ is defined by (σ(x))n = xn+1. The system (Σ, σ) is called a
mixing shift of finite type. Σ has a natural family of metrics dα, α ∈ (0, 1), defined by

dα(x, y) = αn(x,y), where n(x, y) = min { |i| | xi 6= yi}.
The following sets play the role of the local stable and unstable manifolds of x:

W s
loc(x) = { y | xi = yi, i ≥ 0 }, W u

loc(x) = { y | xi = yi, i ≤ 0 },
indeed for n ∈ N,

dα(σn(x), σn(y)) = αn dα(x, y) for y ∈ W s
loc(x),

dα(σ−n(x), σ−n(y)) = αn dα(x, y) for y ∈ W u
loc(x).

Hence the main distance estimate (4.3) in our proofs holds with ν = α and ν̂ = 1/α. A
β-Hölder cocycle A over (Σ, σ, dα) is fiber bunched if there are θ < 1 and L such that

‖An
x‖ · ‖(An

x)−1‖ · αβ|n| < Lθ|n| for all n ∈ Z.

Linear cocycles over an Anosov diffeomorphism. A GL(d,R)-valued cocycle
over f can be viewed as an automorphism of the trivial vector bundle E = M× Rd.
More generally, we can consider linear cocycles over f , i.e. automorphisms of a d-
dimensional vector bundle E over M covering f , see [KS13] for details of this setting
including Hölder regularity. The results (except for statements about subgroups) and
the proofs extend directly to this context.

4. proofs

4.1. Fiber bunching and periodic data. In this section we prove Proposition 2.3
and then we formulate the fiber bunching condition in terms of the periodic data.

Proof of Proposition 2.3. The proof relies on the following result on subadditive
sequences. Let f be a homeomorphism of a compact metric space X. A sequence of
continuous functions an : X → R is called subadditive if

an+k(x) ≤ ak(x) + an(fkx) for all x ∈ X and n, k ∈ N.
Let µ be an f -invariant Borel probability measure on X and let an(µ) =

∫
X
andµ. Then

an+k(µ) ≤ an(µ) + ak(µ), i.e. the sequence of real numbers {an(µ)} is subadditive. It
is well known that for such a sequence the following limit exists:

χ(a, µ) := lim
n→∞

an(µ)

n
= inf

n∈N

an(µ)

n
.

Also, by the Subaddititive Ergodic Theorem, if the measure µ is ergodic then

lim
n→∞

an(x)

n
= χ(a, µ) for µ-almost all x ∈ X.
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Lemma 4.1. [KS13, Proposition 4.9] Let f be a homeomorphism of a compact metric
space X and an : X → R be a subadditive sequence of continuous functions.

If χ(a, µ) < 0 for every ergodic invariant Borel probability measure µ for f , then
there exists N such that aN(x) < 0 for all x ∈ X.

We will apply this result to the sequence of functions

an(x) = log (‖Bn
x‖ · ‖(Bn

x)−1‖ · (νnx )β).

It is easy to verify that this sequence is subadditive. To show that it satisfies the
assumption of Proposition 4.1, we consider Lyapunov exponents of cocycles.

Let µ be an ergodic f -invariant measure, and let λ+(B, µ) and λ−(B, µ) be the largest
and smallest Lyapunov exponents of B with respect to µ. We recall that

λ+(B, µ) = lim
n→∞

1

n
log ‖Bn

x‖ and λ−(B, µ) = lim
n→∞

1

n
log ‖(Bn

x)−1‖−1

for µ almost every x ∈M (see [BPe, Section 2.3], for more details).
Let p = fkp be a periodic point for f . The largest and smallest Lyapunov exponents

of B with respect to the invariant measure µp on the orbit of p satisfy

λ±(B, µp) =
1

k
log

(
the largest/smallest |eigenvalue of Bk

p |
)
.

Since the matrices Ak
p and Bk

p are conjugate, it follows that λ±(B, µp) = λ±(A, µp).

For the scalar cocycle νβ, λ(νβ, µ) =
∫
M log ν(x)β dµ by the Birkhoff Ergodic Theo-

rem, in particular λ(νβ, µp) = 1
k

log(νkp )β.

Since the cocycle A is fiber bunched, there are numbers L and θ < 1 such that

‖An
x‖ · ‖(An

x)−1‖ · (νnx )β < Lθn

for every x ∈M and n ∈ N. It follows that

λ+(A, µp)− λ−(A, µp) + λ(νβ, µp) = lim
n→∞

1

n
log(‖An

p‖ · ‖(An
p )−1‖ · (νnp )β) ≤ log θ < 0,

and hence
λ+(B, µp)− λ−(B, µp) + λ(νβ, µp) ≤ log θ < 0.

We consider the cocycle F = B ⊕ ν over f . By [K11, Theorem 1.4], the Lyapunov
exponents λ1 ≤ ... ≤ λd of F with respect to an ergodic invariant measure µ (listed
with multiplicities) can be approximated by the Lyapunov exponents of F at periodic
points. More precisely, for any ε > 0 there exists a periodic point p ∈M for which the

Lyapunov exponents λ
(p)
1 ≤ ... ≤ λ

(p)
d of F satisfy |λi − λ(p)

i | < ε for i = 1, . . . , d.

Thus for the sequence of functions an(x) = log (‖Bn
x‖ · ‖(Bn

x)−1‖ · (νnx )β),

χ(a, µ)
def
= lim

n→∞

an(x)

n
= λ+(B, µ)− λ−(B, µ) + λ(νβ, µ) < 0.

Now it follows from Lemma 4.1 that there exists N such that aN(x) < 0 for all x, i.e.

(4.1) ‖BN
x ‖ · ‖(BN

x )−1‖ · (νNx )β < 1 for all x ∈M.
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By continuity, there exists θ̃ < 1 such that the left hand side of (4.1) is smaller than θ̃
for all x. Writing n ∈ N as n = mN + r, where m ∈ N ∪ {0} and 0 ≤ r < N , we get

(4.2) ‖Bn
x‖ · ‖(Bn

x)−1‖ · (νnx )β ≤ L θ̃m, where L = max
x,r

(‖Br
x‖ · ‖(Br

x)
−1‖ · (νrx)β).

The corresponding inequality with ν̂ is obtained similarly, and we conclude that the
cocycle B is fiber bunched. �

The argument implies the following.

Corollary 4.2. A cocycle B is fiber bunched if and only if there exists a number η < 0
such that for every f -periodic point p = fkp,

λ+(B, µp)− λ−(B, µp) + λ(νβ, µp) =
1

k
log

(
largest |eigenvalue of Bk

p |
smallest |eigenvalue of Bk

p |
(νkp )β

)
< η

and the corresponding enequality holds for ν̂.

4.2. Holonomies. An important role in our arguments is played by holonomies. We
follow the notations and terminology form [V08, ASV] for linear cocycles.

Let E = M× Rd be a trivial vector bundle over M. We view Ax as a linear map
from Ex, the fiber at x, to Efx, so An

x : Ex → Efnx and A−nx : Ex → Ef−nx.

Definition 4.3. A stable holonomy for a linear cocycle A : E → E is a continuous
map HA,s : (x, y) 7→ HA,s

x, y , where x ∈M, y ∈ W s(x), such that

(H1) HA,s
x, y is a linear map from Ex to Ey;

(H2) HA,s
x, x = Id and HA,s

y, z ◦HA,s
x, y = HA,s

x, z ;

(H3) HA,s
x, y = (An

y )−1 ◦HA,s
fnx, fny ◦An

x for all n ∈ N.

Condition (H2) implies that (HA,s
x, y)

−1 = HA,s
y, x.

The unstable holonomy HA,u are defined similarly for y ∈ W u(x) with

(H3′) HA,u
x, y = (A−ny )−1 ◦HA,u

f−nx, f−ny ◦A
−n
x for all n ∈ N.

We consider holonomies which satisfy the following Hölder condition:

(H4) ‖HA,s(u)
x,y −Id ‖ ≤ c dist(x, y)β, where c is independent of x and y ∈ W s(u)

loc (x).

A local stable manifold W s
loc(x) is a ball in W s(x) centered at x of a small radius ρ

in the intrinsic metric of W s(x). We choose ρ small enough so that (2.1) ensures that
‖Dfy‖ < ν(x) for all x ∈ M and y ∈ W s

loc(x). Local unstable manifolds are defined
similarly, and it follows that for all n ∈ N,

(4.3)
dist(fnx, fny) < νnx · dist(x, y) for all x ∈M and y ∈ W s

loc(x),

dist(f−nx, f−ny) < ν̂−nx · dist(x, y) for all x ∈M and y ∈ W u
loc(x).



COHOMOLOGY OF FIBER BUNCHED COCYCLES OVER HYPERBOLIC SYSTEMS 9

Proposition 4.4. Suppose that a cocycle A is fiber bunched. Then A has unique stable
and unstable holonomies satisfying (H4). Moreover, for every x ∈M,

HA,s
x,y = lim

n→∞
(An

y )−1 ◦An
x, y ∈ W s(x), and

HA,u
x, y = lim

n→∞

(
(A−ny )−1 ◦ (A−nx )

)
= lim

n→∞

(
An
f−ny ◦ (An

f−nx)
−1
)
, y ∈ W u(x).

Proof. We will give the proof for the stable holonomies. The argument for the unstable
holonomies is similar. Under the fiber bunching condition “at each step”,

(4.4) ‖Bx‖ · ‖B−1
x ‖ · ν(x)β < 1 for all x ∈M,

existence of such holonomies was proved in [V08, ASV] and uniqueness in [KS13]. We
indicate how to extend these results to our setting.

Since the cocycle A is fiber bunched (in the sense of Definition 2.2) and ν < 1, there
exist N ∈ N such that for all n ≥ N and x ∈ M, ‖An

x‖ · ‖(An
x)−1‖ · (νnx )β < 1. Thus

the cocycles An satisfy (4.4) and hence have unique stable holonomies.
The stable holonomies for AN and AN+1 are also the stable holonomies for AN(N+1),

and hence they coincide by uniqueness. Let H = HAN+1,s = HAN ,s. Clearly, H satisfies
the properties (H 1,2,4). Also, since HAN+1,s and HAN ,s satisfy (H3),

Hx,y = (AN
y )−1 ◦HfNx, fNy ◦AN

x = (AN+1
y )−1 ◦HfN+1x, fN+1y ◦AN+1

x .

Hence

HfNx, fNy = (AfNy)
−1 ◦HfN+1x, fN+1y ◦AfNx,

and it follows that H satisfies (H3). The stable holonomy for A satisfying (H4) is
unique since it is also a holonomy for AN . Thus H = HA,s, and it remains to show
that it equals the limit.

By (H3), An
x = (Hfnx,fny)

−1 ◦ An
y ◦HA,s

x,y , and hence by (H4) there is a constant c1

such that

(4.5) ‖An
x‖ = c1 ‖An

y‖ for all x ∈M, y ∈ W s
loc(x), and n ∈ N.

Hence

‖HA,s
x,y − (An

y )−1 ◦An
x‖ = ‖(An

y )−1 ◦ (HA,s
fnx, fny − Id) ◦An

x‖ ≤

≤ ‖(An
y )−1‖ · ‖An

y‖ · c dist(fnx, fny)β ≤ c2‖(An
y )−1‖ · ‖An

y‖ · (νny )β → 0

as n→∞ by (4.3) and fiber bunching. �

4.3. Relations between Hölder conjugacies and holonomies.

Proposition 4.5. Let A and B be two fiber bunched cocycles and let C be a β-Hölder
continuous conjugacy between A and B. Then

(a) C intertwines the holonomies for A and B, i.e.

HA, s(u)
x,y = C(y) ◦HB, s(u)

x,y ◦ C(x)−1 for every x ∈M and y ∈ W s(u)(x).
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(b) C conjugates the periodic cycle functionals of A and B, i.e.

HA,s
y,x ◦HA,u

x,y = C(x) ◦HB,s
y,x ◦HB,u

x,y ◦ C(x)−1

for every x ∈M and y ∈ W s(x) ∩W u(x).

(c) C is uniquely determined by its value at one point.

Proof. (a) Let x ∈ M and y ∈ W s(x). By iterating x and y forward the problem
reduces to the case of y ∈ W s

loc(x). Since A(x) = C(fx) ◦Bx ◦ C(x)−1, we have

(4.6)

(An
y )−1 ◦An

x = C(y) ◦ (Bn
y )−1 ◦ C(fny)−1 ◦ C(fnx) ◦Bn

x ◦ C(x)−1 =

= C(y) ◦ (Bn
y )−1 ◦ (Id + rn) ◦Bn

x ◦ C(x)−1 =

= C(y) ◦ (Bn
y )−1 ◦Bn

x ◦ C(x)−1 + C(y) ◦ (Bn
y )−1 ◦ rn ◦Bn

x ◦ C(x)−1.

Hölder continuity of C and (4.3) imply that

‖rn‖ = ‖C(fny)−1 ◦ C(fnx)− Id‖ ≤ ‖C(fny)−1‖ · ‖C(fnx)− C(fny)‖ ≤
≤ c2 dist(fnx, fny)β ≤ c2 (νny )β.

Using (4.5), the above estimate, and fiber bunching of the cocycle B, we obtain

‖(Bn
y )−1 ◦ rn ◦Bn

x‖ ≤ ‖(Bn
y )−1‖ · ‖rn‖ · c3 ‖Bn

y‖ ≤

≤ c4 ‖(Bn
y )−1‖ · ‖Bn

y‖ · (νny )β ≤ c5θ
n → 0 as n→∞.

Hence the second term in the last line of (4.6) tends to 0. Since lim
n→∞

(An
y )−1◦An

x = HA,s
x,y

and lim
n→∞

(Bn
y )−1 ◦Bn

x = HB,s
x,y , passing to the limit in (4.6) we obtain (a).

The statement for the unstable holonomies is proven similarly and (b) follows im-
mediately from (a).

(c) Let C(x0) be given. By (a) for every y ∈ W s(x0), the conjugacy at y is given by

C(y) = HB,s
y,x ◦ C(x0) ◦HA,s

x,y .

Since the stable manifold W s(x0) is dense in M and C is Hölder continuous, C is
uniquely determined on M. �

4.4. Cocycles over a diffeomorphism with a fixed point.

Outline of the proof of Theorem 2.4. Since the cocycle A is fiber bunched and B

has conjugate periodic data, B is also fiber bunched by Proposition 2.3. The theorem
then follows from Propositions 4.6 and 4.7 below. Somewhat more directly, the argu-
ment can be outlined as follows. We consider the cocycle B̃ = C(p) ◦ B ◦ C(p)−1, so

that B̃p = Ap, and the function C̃(q) = C(q)C(p)−1, so that C̃(p) = Id. We construct

conjugacies between A and B̃ along the stable and unstable manifolds of p

C̃s(x) = HA,s
p, x ◦H B̃,s

x, p for x ∈ W s(p),

C̃u(x) = HA,u
p, x ◦H B̃,u

x, p for x ∈ W u(p).



COHOMOLOGY OF FIBER BUNCHED COCYCLES OVER HYPERBOLIC SYSTEMS 11

The proof of Proposition 4.6 shows that if x is a homoclinic point for p, i.e. x ∈
W s(p) ∩W u(p), then

HA,s
x,p ◦HA,u

p,x = H B̃,s
x,p ◦H B̃,u

p,x , i.e. C̃s(x) = C̃u(x)
def
= C̃(x).

The proof of Proposition 4.7 shows that C̃ is β-Hölder continuous on the set of homo-
clinic points, and hence it can be extended to M. C(x) = C̃(x)C(p) is a conjugacy
between A and B, and it is clear from the construction that it takes values in the closed
subgroup G0. Uniqueness follows from Proposition 4.5(c). �

Assumptions. In Propositions 4.6 and 4.7, the diffeomorphism f has a fixed point p
and the cocycles A and B are fiber bunched.

Proposition 4.6. Suppose that for each periodic point q = fkq in a neighborhood U
of p there is C(q) ∈ GL(d,R) such that

Ak
q = C(q) ◦Bk

q ◦ C(q)−1 and d(C(p), C(q)) ≤ c dist(p, q)β.

Then C(p) conjugates the periodic cycle functionals of A and B at p, i.e.

HA,s
x,p ◦HA,u

p,x = C(p) ◦HB,s
x,p ◦HB,u

p,x ◦ C(p)−1 for every x ∈ W s(p) ∩W u(p).

The next proposition describes a sufficient condition for a conjugacy at a fixed point
to extend to a conjugacy between cocycles.

Proposition 4.7. Let Cp ∈ GL(d,R) be such that

(a) Ap = Cp ◦Bp ◦ C−1
p and

(b) HA,s
x,p ◦HA,u

p,x = Cp ◦HB,s
x,p ◦HB,u

p,x ◦ C−1
p for every x ∈ W s(p) ∩W u(p).

Then there exists a unique β-Hölder continuous conjugacy C(x) between A and B such
that C(p) = Cp. Moreover, if A and B take values in a closed subgroup G0 of GL(d,R)
and Cp ∈ G0, then C(x) ∈ G0 for all x.

We note that the first assumption on Cp is obviously necessary, and so is the second
one by Proposition 4.5 (b). Thus a conjugacy Cp between the matrices Ap and Bp

extends to a conjugacy between cocycles if and only if (b) is satisfied.

Proof of Proposition 4.6. First we modify the cocycle B so that the two cocycles
coincide at the fixed point p. We define the cocycle B̃ and the function C̃(q) by

B̃x = C(p) ◦Bx ◦ C(p)−1 and C̃(q) = C(q)C(p)−1, q ∈ U.
The cocycle B̃ is fiber bunched and B̃p = Ap. Also, Ak

q = C̃(q) ◦ B̃k
q ◦ C̃(q)−1 and

d(C̃(q), Id) ≤ c̃ dist(p, q)β for all q ∈ U.
We prove that for every x ∈ W s(p) ∩W u(p),

H B̃,u
p, x ◦H Ã,u

x, p ◦H Ã,s
p, x ◦HB̃,s

x, p = Id.

By Proposition 4.4, H B̃ = C(p) ◦HB ◦ C(p)−1, and Proposition 4.6 follows.
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In the rest of the proof, we write B for B̃ and C for C̃ to simplify the notations, and
we fix x ∈ W s(p) ∩W u(p). By Proposition 4.4,

HA,s
p, x ◦HB,s

x, p = lim
n→∞

(
(An

x)−1 ◦An
p ◦ (Bn

p )−1 ◦Bn
x

)
= lim

n→∞

(
(An

x)−1 ◦Bn
x

)
since Bn

p = An
p . Similarly,

HB,u
p, x ◦HA,u

x, p = lim
n→∞

(
Bn
f−nx ◦ (An

f−nx)
−1
)
.

Thus,

HB,u
p, x ◦HA,u

x, p ◦HA,s
p, x ◦HB,s

x, p = lim
n→∞

(
Bn
f−nx ◦ (An

f−nx)
−1 ◦ (An

x)−1 ◦Bn
x

)
,

and we will show that the limit on the right hand side equals the identity.

Since x ∈ W s(p) ∩W u(p), by (2.1) there is a constant c1 = c1(x) such that

dist(fnx, p) < νnx · c1distW s(p)(x, p) and dist(f−nx, p) < ν̂−nx · c1distWu(p)(x, p),

and hence
dist(fnx, f−nx) < c2 max{νnx , ν̂−nx }.

Therefore, for all sufficiently large n we can apply Anosov Closing Lemma to the orbit
segment {f i(x), i = −n, . . . , n} [KtH, Theorem 6.4.15]. Thus there exists a periodic
point q = f 2nq such that

dist(f ix, f iq) ≤ c3 max{νnx , ν̂−nx } for i = −n, . . . , n.
Additionally, we assume that n is large enough so that f−nq ∈ U .

Now we express Bn
f−nx, (An

f−nx)
−1 ◦ (An

x)−1, and Bn
x in terms of the values of the

cocycles at the corresponding iterates of q. To use the holonomies, we consider the
point

z = W s
loc(q) ∩W u

loc(x).

It is easy to see that for i = −n, . . . , n,

(4.7) dist(f iz, f ix) ≤ c4 max{νnx , ν̂−nx } and dist(f iz, f iq) ≤ c4 max{νnx , ν̂−nx }.
Since f iz ∈ W u

loc(f
ix) and f iz ∈ W s

loc(f
iq), by the properties (H3) and (H3′) we have

Bn
x = HB,u

fnz, fnx ◦B
n
z ◦HB,u

x, z = HB,u
fnz, fnx ◦H

B,s
fnq, fnz ◦B

n
q ◦HB,s

z, q ◦HB,u
x, z .

It follows from (H4) that

Hs,B
z,q = Id +Rs,B

z,q , where ‖Rs,B
z,q ‖ ≤ c dist(z, q)β ≤ c5(max{νnx , ν̂−nx })β,

and similar estimates hold for the other holonomies due to (4.7). Thus we obtain

(4.8) Bn
x = (Id +Rn

1 ) ◦Bn
q ◦ (Id +Rn

2 ), where ‖Rn
1‖, ‖Rn

2‖ ≤ c6(max{νnx , ν̂−nx })β.
Similarly,

(4.9) Bn
f−nx = (Id +Rn

3 ) ◦Bn
f−nq ◦ (Id +Rn

4 )

(4.10) (An
f−nx)

−1 ◦ (An
x)−1 = (A2n

f−nx)
−1 = (Id +Rn

5 ) ◦ (A2n
f−nq)

−1 ◦ (Id +Rn
6 ).
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Since f−nq is a point of period 2n in the neighborhood U of p, by the assumption
there exists C(f−nq) such that

(4.11)

A2n
f−nq = C(f−nq) ◦B2n

f−nq ◦ C(f−nq)−1, where

C(f−nq) = Id +Rn
7 and C(f−nq)−1 = Id +Rn

8 with

‖Rn
7‖, ‖Rn

8‖,≤ c7 dist(p, f−nq)β ≤ c8(max{νnx , ν̂−nx })β.
Using (4.10) and (4.11) and combining terms of type Id +Rn

i , we obtain

(4.12) (An
f−nx)

−1 ◦ (An
x)−1 = (Id +Rn

9 ) ◦ (B2n
f−nq)

−1 ◦ (Id +Rn
10)

Finally (4.8), (4.9), and (4.12) yield

(4.13) Bn
f−nx ◦ (An

f−nx)
−1 ◦ (An

x)−1 ◦Bn
x =

= (Id +Rn
3 ) ◦Bn

f−nq ◦ (Id +Rn
11) ◦ (Bn

f−nq)
−1 ◦ (Bn

q )−1 ◦ (Id +Rn
12) ◦Bn

q ◦ (Id +Rn
2 )

= Id + Bn
f−nq ◦Rn

11 ◦ (Bn
f−nq)

−1 + (Bn
q )−1 ◦Rn

12 ◦Bn
q +

+Bn
f−nq ◦Rn

11 ◦ (Bn
f−nq)

−1 ◦ (Bn
q )−1 ◦Rn

12 ◦Bn
q + smaller terms,

where ‖Rn
i ‖ ≤ c9(max{νnx , ν̂−nx })β. Since the cocycle B is fiber bunched,

‖(Bn
q )−1‖ · ‖Bn

q ‖ · ‖Rn
i ‖ ≤ c10 θ

n and ‖Bn
f−nq‖ · ‖(Bn

f−nq)
−1‖ · ‖Rn

i ‖ ≤ c11 θ
n.

Thus we conclude that

Bn
f−nx ◦ (An

f−nx)
−1 ◦ (An

x)−1 ◦Bn
x = Id +Rn, where ‖Rn‖ ≤ c12 θ

n → 0 as n→∞,
and hence

HB,u
p, x ◦HA,u

x, p ◦HA,s
p, x ◦HB,s

x, p = Id.

This completes the proof of Proposition 4.6. �

Proof of Proposition 4.7. We define a conjugacy Cs on the stable manifold of p,

(4.14) Cs(x) = HA,s
p,x ◦ Cp ◦HB,s

x,p for x ∈ W s(p).

Clearly, C(p) = Cp. Also,

An
x = HA,s

p, fnx ◦A
n
p ◦HA,s

x, p = HA,s
p, fnx ◦ Cp ◦B

n
p ◦ C−1

p ◦HA,s
x, p =

= HA,s
p, fnx ◦ Cp ◦H

B,s
fnx, p ◦B

n
x ◦HB,s

p, x ◦ C−1
p ◦HA,s

x, p = Cs(fnx) ◦Bn
x ◦ Cs(x)−1.

Similarly, we define a conjugacy Cu along the unstable manifold of p,

Cu(x) = HA,u
p,x ◦ Cp ◦HB,u

x,p for x ∈ W u(p).

Let X = W u(p) ∩W s(p) be the set of homoclinic points of p. By the assumption (b),

(4.15) Cs(x) = Cu(x)
def
= C(x) for everyx ∈ X.

The set of homoclinic points of p is known to be dense in M [Bo]. To extend the
function C from X toM, we show that C is Hölder continuous on X. Let x and y be
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two sufficiently close points in X. We note that the distances between x and y along
W s(p) and W u(p) can be large. To make an estimate we consider the point

z = W u
loc(x) ∩W s

loc(y),

which is also in X. By the definition of C = Cs and properties of holonomies,

C(z) = HA,s
y,z ◦ C(y) ◦HB,s

z,y = (Id +RA
y,z) ◦ C(y) ◦ (Id +RB

y,z),

where ‖RA
y,z‖, ‖RB

y,z‖ ≤ c dist(y, z)β. Hence

(4.16)
C(z) ◦ C(y)−1 = (Id +RA,s

y,z ) ◦ C(y) ◦ (Id +RB,s
y,z ) ◦ C(y)−1 =

= Id +RA,s
y,z + C(y) ◦RB,s

y,z ◦ C(y)−1 +RA,s
y,z ◦ C(y) ◦RB,s

y,z ◦ C(y)−1.

Similarly, using unstable holonomies, we obtain

(4.17)
C(x) ◦ C(z)−1 =

= Id +RA,u
x,z + C(z) ◦RB,u

x,z ◦ C(z)−1 +RA,u
x,z ◦ C(z) ◦RB,u

x,z ◦ C(z)−1.

Now we show that ‖C‖ and ‖C−1‖ are bounded on X. We fix a small number ε
and choose a finite subset Y of X such that for each x ∈ X there is y ∈ Y such that
dist(x, y) ≤ ε. Since Y is finite, there is a constant M such that

‖C(y)‖ ≤M and ‖C(y)−1‖ ≤M for all y ∈ Y.
Let x ∈ X, let y ∈ Y be such that dist(x, y) ≤ ε, and let z = W s

loc(x) ∩W u
loc(y).

Then multiplying both sides of (4.16) by C(y) and estimating the norm we see that

‖C(z)‖ ≤ (2 + 2M2)M,

assuming that ε is sufficiently small so that c dist(x, z)β < 1. Now boundedness of
‖C(x)‖ follows similarly from (4.17). One can obtain expressions for C(z)−1 ◦ C(y)
and C(x)−1 ◦ C(z) similar to (4.16) and (4.17) and conclude that ‖C(x)−1‖ is also
bounded on X.

Now it follows from (4.16) and (4.17) that for any sufficiently close x, y in X

C(x) ◦ C(y)−1 = C(x) ◦ C(z)−1 ◦ C(z) ◦ C(y)−1 = Id +Rx,y,

where ‖Rx,y‖ ≤ c′dist(x, y)β,

and hence

(4.18)

d(C(x), C(y)) = ‖C(x)− C(y)‖+ ‖C(x)−1 − C(y)−1‖ ≤
≤ ‖C(x)C(y)−1 − Id‖ · ‖C(y)‖+ ‖C(x)−1‖ · ‖Id− C(x)C(y)−1‖ ≤
≤ 2c′M ′ dist(x, y)β.

Thus we can extend the function C on X to a β-Hölder continuous function on M,
and

An
x = C(fnx) ◦Bn

x ◦ C(x)−1 for all x ∈M and n ∈ Z.
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The conjugacy C takes values in the closed subgroup G0 by the construction: the
holonomies take values in G0 by Proposition 4.4, hence so does the restriction of C to
X by (4.14) and (4.15), and thus so does C. Uniqueness of the conjugacy follows from
Proposition 4.5(c). �

4.5. Centralizers of cocycles and connections to conjugacies.

The centralizer of a cocycle of A is the set

Z(A) = {D :M→ GL(d,R) | Ax = D(fx) ◦Ax ◦D(x)−1 for all x ∈M}.
We consider the centralizer in the β-Hölder category.

It is easy to see that Z(A) is a group with respect to pointwise multiplication and
that Z(A) is a subgroup of Z(Ak) for all k ≥ 1.

Proposition 4.8. For any fiber bunched cocycle A there exists M ≥ 1 such that

Z(AMT ) = Z(AM) for all T ≥ 1.

Proof. We note that for every k ≥ 1 the cocycle Ak are also fiber bunched.
Let p be a periodic point of f of period N . Then it is a fixed point for fN , and

we consider the iterate Ā = AN over fN . An element D of the centralizer of Āk is a
conjugacy between Āk and itself. Hence by Proposition 4.5, D is uniquely determined
by its value at p. By Proposition 4.7, a matrix Dp = D(p) extends to a Hölder
conjugacy D on M if and only if

Āk
p = Dp ◦ Āk

p ◦D−1
p and

H Āk,s
x,p ◦H Āk,u

p,x = Dp ◦H Āk,s
x,p ◦H Āk,u

p,x ◦D−1
p for every x ∈ W s(p) ∩W u(p).

The second condition is the same for all k ≥ 1 since the holonomies of Ā coincide with
the holonomies of Āk by the uniqueness.

The first condition is equivalent to the system of linear equations Āk
p ◦Dp = Dp ◦ Āk

p

in d2 variables, and hence the set of its solutions can be identified with a subspace Vk
of Rd2 . Intersecting this set with GL(d,R) gives the centralizer of the matrix Āk

p. The

dimensions of the subspaces Vk are bounded by d2. Let L ≥ 1 be the smallest number
such that dimVL = maxk dimVk. Clearly VL ⊆ VLT , and hence VL = VLT . Therefore,

Z(ĀLT ) = Z(ĀL) i.e. Z(ANL·T ) = Z(ANL) for all T ≥ 1.

�

The following proposition is easy to verify.

Proposition 4.9. Let C(A,B) be the set of conjugacies between A and B, and let
C1 ∈ C(A,B). Then C2 ∈ C(A,B) if and only if C1C

−1
2 ∈ Z(A). Thus the conjugacy

between A and B is unique up to an element of the centralizer and C(A,B) = Z(A)C1.
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4.6. Proof of Theorem 2.2. To obtain a fixed point, we pass to an iterate of f . Let
p1 be a periodic point of f of period N . We consider the diffeomorphism fN and the
cocycles AN and BN over fN . Clearly these cocycles are β-Hölder continuous and fiber
bunched. Thus we apply Theorem 2.4 with C(p) = Id and conclude that there exists
a β-Hölder continuos conjugacy C1 between AN and BN . It remains show that there
exists a conjugacy beween the original cocycles A and B over f .

By Proposition 4.8 there exists M such that Z(ANM ·T ) = Z(ANM) for every T ≥ 1.
We note that C1 is also a conjugacy for ANM and BNM .

It is known that any transitive Anosov diffeomorphism has periodic points of all
sufficiently large periods. We pick a periodic point p2 of a period K > 1 relatively
prime with MN . As above, we obtain a conjugacy C2 for the cocycles AK and BK

over fK . Thus both C1 and C2 are Hölder conjugacies for the cocycles ANMK and
BNMK over fNMK , and hence by Proposition 4.9, C1C

−1
2 ∈ Z(ANMK) = Z(ANM).

Since C1 is a conjugacy for ANM and BNM , C2 is also a conjugacy for these cocycles.
Thus C2 is a conjugacy for the cocycles over fNM and fK , where MN and K are

relatively prime. Hence there exist integers r and s such that NMr + Ks = 1, and it
is easy to see that C2 is also a conjugacy for the cocycles A and B over f .

This completes the proof of the theorem. �

4.7. Proof of Theorem 2.7. Since the cocycle B is uniformly quasiconformal (see
Definition 2.6), it satisfies the fiber bunching condition (2.2) with

L = sup
x,n

(‖Bn
x‖ · ‖(Bn

x)−1‖) and θ = max
x

ν(x).

Let C be a µ-measurable conjugacy between A and B. First we show that C inter-
twines holonomies of A and B on a set of full measure, i.e. there exists a set Y ⊂M,
µ(Y ) = 1, such that

(4.19) HA,s
x,y = C(y) ◦HB,s

x,y ◦ C(x)−1 for all x, y ∈ Y such that y ∈ W s(x),

and a similar statement holds for the unstable holonomies.

Let x ∈M and y ∈ W s(x). As in the proof of Proposition 4.5(a), we obtain that

(4.20) (An
y )−1 ◦An

x = C(y) ◦ (Bn
y )−1 ◦Bn

x ◦C(x)−1 +C(y) ◦ (Bn
y )−1 ◦ rn ◦Bn

x ◦C(x)−1,

where

‖rn‖ ≤ ‖C(fny)−1‖ · ‖C(fnx)− C(fny)‖.
Since C is µ-measurable, by Lusin’s theorem there exists a compact set S ⊂M with

µ(S) > 1/2 such that C is uniformly continuous on S and hence ‖C‖ and ‖C−1‖ are
bounded on S. Let Y be the set of points in M for which the frequency of visiting S
equals µ(S) > 1/2. By Birkhoff Ergodic Theorem µ(Y ) = 1. If x and y are in Y , there
exists a sequence {ni} such that fnix and fniy are in Y for all i. It follows that

‖rni
‖ → 0 as i→∞
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and ‖C‖, ‖C−1‖ are uniformly bounded on {xni
, yni
}. The product

‖(Bn
y )−1‖ · ‖Bn

x‖ ≤ ‖H
B,s
fnx, fny‖ · ‖(B

n
x)−1‖ · ‖HB,s

x,y ‖ · ‖Bn
x‖

is uniformly bounded since the cocycle B is uniformly quasiconformal.
Thus for every x and y in Y such that y ∈ W s(x), the second term in (4.20) tends to

0 along a subsequence, and (4.19) follows. The statement for the unstable holonomies
is proven similarly.

Let x, y ∈ Y and y ∈ W s
loc(x). Then by (4.19)

C(y) = HA,s
x,y ◦ C(x) ◦HB,s

x,y .

It follows as in the proof of Proposition 4.7, (4.16), that

C(y) ◦ C(x)−1 = Id +RA,s
x,y + C(x) ◦RB,s

y,z ◦ C(x)−1 +RA,s
y,z ◦ C(x) ◦RB,s

x,y ◦ C(x)−1,

where

‖RA
x,y‖, ‖RB

x,y‖ ≤ c dist(x, z)β.

Since C is bounded on Y , this implies that

‖C(y) ◦ C(x)−1 − Id‖ ≤ c1 dist(x, y)β,

and it follows as in (4.18) that

(4.21) d(C(x), C(y)) ≤ c2 dist(x, y)β,

where c2 does not depend on x and y. The same holds for any x, y ∈ Y such that
y ∈ W u

loc(x).

We consider a small open set U in M with a product structure, i.e.

U = W s
loc(x0)×W u

loc(x0)
def
= {W s

loc(x) ∩W u
loc(y) | x ∈ W s

loc(x0), y ∈ W u
loc(x0)}.

Since the measure µ has local product structure, µ is equivalent to the product of
conditional measures on W s

loc(x0) and W u
loc(x0), and hence for µ almost all local stable

leaves in U , the set of points of Y on the leaf has full conditional measure. Since µ has
full support, the conditional measures on almost all leaves have full support.

Hence for any two points x and z in Y ∩ U that lie on two such stable leaves, there
exists a point y ∈ W s

loc(x) ∩ Y such that W u
loc(y) ∩W s

loc(z) is also in Y ∩ U . It follows
from (4.21) and the local product structure of the stable and unstable manifolds that

d(C(x), C(z)) ≤ c3 dist(x, z)β.

This estimate holds for all x, z in a set of full measure Ỹ ⊂ Y .
Let Ȳ =

⋂∞
n=−∞ f

n(Ỹ ). Then Ȳ is f -invariant and A(x) = C(fx) ◦ B(x) ◦ C(x)−1

for all x ∈ Ȳ . Since µ has full support and µ(Ȳ ) = 1, the set Ỹ is dense in M. Hence
we can extend C from Ȳ and obtain a Hölder continuous conjugacy C̃ on M that
coincides with C on a set of full measure.
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5. An application: smooth conjugacy to a small perturbation for
Anosov automorphisms

Let g be an Anosov diffeomorphism ofM. If f is a diffeomorphism ofM sufficiently
C1 close to g, then f is also Anosov and it is topologically conjugate to g, i.e. there
exists a homeomorphism h of M such that

g = h−1 ◦ f ◦ h.
Moreover, the conjugacy is unique when chosen near identity. (See, e.g. [KtH, Corollary
18.2.2]). The conjugacy h is only Hölder continuous in general, and it is important
to find out when the diffeomorphisms f and g are smoothly conjugate. If h is a C1

diffeomorphism, then the derivatives of the return maps of f and g at the corresponding
periodic points are conjugate. Indeed, differentiating gn = h−1 ◦ fn ◦ h at periodic
points p = fn(p) yields

Dpg
n = (Dph)−1 ◦Dh(p)f

n ◦Dph whenever p = fn(p).

A diffeomorphism g is said to be locally rigid if for any C1-small perturbation f
the conjugacy of the derivatives at the periodic points is sufficient for h to be C1.
The problem of local rigidity has been extensively studied and Anosov diffeomor-
phisms with one-dimensional stable and unstable distributions were shown to be locally
rigid [dlL87, dlLM88, dlL92]. In general, this is not the case for systems with higher-
dimensional distributions [dlL92, dlL02]. Positive results were established for certain
classes of diffeomorphisms that are conformal on the full stable and unstable distribu-
tions, [dlL02, KS03, dlL04, KS09]. In a different direction, local rigidity was proved
in [G08] for an irreducible Anosov toral automorphism L : Td → Td with real eigen-
values of distinct moduli, as well as for some nonlinear systems with similar structure.
Recently, this result was extended to a broad class of Anosov automorphisms.

Theorem 5.1. [GKS11] Let L : Td → Td be an irreducible Anosov automorphism such
that no three of its eigenvalues have the same modulus. Let f be a C1-small perturbation
of L such that the derivative Dpf

n is conjugate to Ln whenever fn(p) = p. Then f is
C1+Hölder conjugate to L.

We recall that an automorphism L is called to be irreducible if it has no rational
invariant subspaces, or equivalently if its characteristic polynomial is irreducible over Q.
Examples in [G08] show that irreducibility of L is a necessary assumption for local
rigidity except when L is conformal on the stable and unstable distributions.

Theorem 2.4 allows us to obtain an alternative sufficient condition for smoothness
of the conjugacy to a small perturbation. Instead of the assumption on the eigenvalues
of L we make an assumption that the conjugacy of the periodic data of the cocycles
L = DL and Df is Hölder continuous at a single periodic point.
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Theorem 5.2. Let L : Td → Td be an irreducible Anosov automorphism and let f be
a C1-small perturbation of L. Suppose that for each periodic point p = fn(p) there is
C(p) such that Dpf

n = C(p) ◦Ln ◦C(p)−1 and C(p) is Hölder continuous at a periodic
point p0. Then f is C1+Hölder conjugate to L.

The proof of this theorem differs from the proof of Theorem 5.1 only in the way we
obtain conformality of Df on certain invariant sub-bundles, as explained below.

We denote by Eu,L the unstable distribution of L. Let 1 < ρ1 < ρ2 < · · · < ρl be
the distinct moduli of the unstable eigenvalues of L, and let

Eu,L = EL
1 ⊕ EL

2 ⊕ · · · ⊕ EL
l

be the corresponding splitting of the unstable distribution. Since f is C1 close to L, f
is also Anosov, and its unstable distribution Eu,f splits into a direct sum of l invariant
Hölder continuous distributions close to the corresponding distributions for L:

Eu,f = Ef
1 ⊕ E

f
2 ⊕ · · · ⊕ E

f
l

(see, e.g. [Pe04, Section 3.3]).

Let A = L|EL
i and B = Df |Ef

i . Conformality of the cocycles plays an important role
in establishing smoothness of the conjugacy. Since L is irreducible, all its eigenvalues
are simple. Thus the restriction of L to EL

i is diagonalizable over C and its eigenvalues
are of the same modulus. Hence the cocycle A = L|EL

i is conformal in some norm.
In [GKS11], conformality of B at the periodic points together with the assumption

that the distributions EL
i and Ef

i are either one- or two-dimensional allows us to con-
clude that, by [KS10, Theorem 1.3], the cocycle B is conformal. In higher dimensions,
conformality at the periodic points does not imply conformality [KS10, Proposition
1.2]. In Theorem 5.2 we make no assumptions on the dimensions of EL

i , and so we use
a different approach to obtain conformality of B.

Let β > 0 be so that C(p) is β-Hölder at p0 and all cocycles Df |Ef
i are β-Hölder.

Since the cocycle A = L|EL
i is conformal, it is fiber bunched and it follows that the

cocycle B = Df |Ef
i is also fiber bunched. We consider the iterates AN and BN over fN ,

where N is the period of p0. Theorem 2.4 implies that there exists a Hölder continuos
conjugacy C between AN and BN . Since AN is conformal, this implies that BN is
uniformly quasiconformal, and hence so is B. By [KS13, Corollary 3.2], B is conformal

with respect to a continuous Riemannian metric on Ef
i .

After conformality of Df on each sub-bundle Ef
i is obtained, the proof of Theorem

5.2 proceeds exactly as the proof of Theorem 5.1. We consider the topological conjugacy
h between L and f close to the identity. We use conformality to show that h is
C1+Hölder along the leaves of the linear foliation tangent to EL

i , and then we establish
the smoothness of h on M. �

Corollary 2.5, which we prove next, shows that the cocycles L and Df are Hölder
cohomologous without irreducibility assumption on L. This is not known to imply
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smoothness of h. The arguments in Theorems 5.1 and 5.2 use both density of the
subspaces EL

i in Td and conformality of L|EL
i , which follow from irreducibility.

Proof of Corollary 2.5. The proof is closely related to the above argument.
Let A(x) = A be the generator of A. Let ρ1 < · · · < ρl be the distinct moduli of the

eigenvalues of A and let Rd = EA
1 ⊕ · · · ⊕ EA

l be the corresponding invariant splitting
into direct sums of the generalized eigenspaces. We denote Ai = A|EA

i . It follows that
for any ε > 0 there exists Cε such that

C−1
ε (ρi − ε)n ≤ ‖Ani u‖ ≤ Cε(ρi + ε)n for any unit vector u ∈ EA

i ,

and hence the cocycle Ai generated by Ai is fiber bunched for any β > 0. Moreover, any
cocycle B with generator B sufficiently C0 close to A has the corresponding invariant
splitting Rd = EB

1 (x) ⊕ · · · ⊕ EB
l (x), which is close to that of A and is β-Hölder for

some β > 0. The corresponding restrictions Bi satisfy similar estimates and hence are
also fiber bunched. Since the conjugacy C(p) maps EA

i (p) to EB
i (p), the cocycles Ai

and Bi have conjugate periodic data. Hence by Theorem 2.4 they are conjugate via
a Hölder continuous function Ci and we obtain a conjugacy between A and B as the
direct sum of Ci. �
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