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Abstract. We consider pointwise, box, and Hausdorff dimensions of invariant
measures for circle diffeomorphisms. We discuss the cases of rational, Diophan-
tine, and Liouville rotation numbers. Our main result is that for any Liouville
number τ there exists a C∞ circle diffeomorphism with rotation number τ such
that the pointwise and box dimensions of its unique invariant measure do not ex-
ist. Moreover, the lower pointwise and lower box dimensions can equal any value
0 ≤ β ≤ 1.

1. Introduction

The study of dimensional characteristics of invariant sets and measures was origi-
nated by physicists and applied mathematicians in the context of strange attractors.
Beginning with the work of Eckmann and Ruelle [3] it developed into a rigorous
mathematical theory. Dimension theory now plays an important role in dynamics
[10]. Dimensional properties of invariant sets and measures are often related to other
characteristics of the dynamical system, such as Lyapunov exponents and entropy.

In this paper we study pointwise, box, and Hausdorff dimensions of invariant
measures for circle diffeomorphisms. The notion of pointwise (or local) dimension
was introduced by Young in [11]. It plays an important role in dimension theory of
dynamical systems. For a Borel measure µ on a metric space X, its lower and upper
pointwise dimensions at a point x are defined as

dµ(x) = lim inf
r→0

log µ(B(x, r))

log r
and dµ(x) = lim sup

r→0

log µ(B(x, r))

log r
,

where B(x, r) is a ball of radius r centered at x. If the two limits coincide, then
their common value dµ(x) is called the pointwise dimension of µ at x. The pointwise
dimension describes the local distribution of the measure and of a typical orbit. It
serves as an important tool for estimating the Hausdorff and box dimensions of
measures and sets, see Section 2.2. For example, if the pointwise dimension of an
ergodic measure µ exists almost everywhere, then all dimensional characteristics of
µ coincide and give a fundamental characteristic of µ called the fractal dimension.
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In [2] Barreira, Pesin, and Schmeling showed that pointwise dimension exits for
any hyperbolic invariant measure of a C1+α diffeomorphism. Dimensional struc-
tures of non-hyperbolic measures can be more complicated. In [9] Ledrappier and
Misiurewicz constructed an example of a Cr map of an interval preserving an er-
godic measure whose pointwise dimension does not exist almost everywhere. A
natural class of non-hyperbolic measures is given by invariant measures for circle
diffeomorphisms with irrational rotation numbers. In [8] we constructed examples
of such diffeomorphisms for which pointwise dimension of the measures does not
exist almost everywhere.

Dimensional properties of an invariant measure of a circle diffeomorphism f de-
pend significantly on the rotation number of f (see Section 2.1). First we consider
the simpler cases of rational and Diophantine numbers, and then describe our main
result for Liouville numbers. The rotation number of f is rational if and only if
f has periodic points. Such a diffeomorphism may preserve a variety of measures
with different properties, however, any ergodic invariant measure for f is a uniform
δ-measure on a periodic orbit. This immediately implies the following result.

Proposition 1.1. Let f be a circle homeomorphism with a rational rotation number
and let µ be an ergodic invariant measure for f . Then

(1) dµ(x) = 0 for µ-almost every x in S1,

(2) dimH µ = dimB µ = dimB µ = 0.

In contrast, diffeomorphisms with an irrational rotation number are uniquely er-
godic. In this case, the properties of the invariant measure depend on how well the
irrational rotation number can be approximated by rational numbers. The numbers
that cannot be rapidly approximated by rationals are called Diophantine.

Definition 1.2. A number τ is called Diophantine if there exist δ > 0 and K > 0
such that

(1.1) | τ − p/q | > K/|q|2+δ for any integers p and q.

Circle diffeomorphisms with Diophantine rotation numbers are smoothly conju-
gate to rotations. Therefore the invariant measure for such a diffeomorphism is
equivalent to the Lebesgue measure and hence has the same dimensional properties.

Proposition 1.3. Let f be a C∞ circle diffeomorphism with a Diophantine rotation
number. Then for its unique invariant measure µ,

(1) dµ(x) = 1 for every x in S1,

(2) dimH µ = dimB µ = dimB µ = 1.
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The most interesting case is that of Liouville rotation numbers. These are irra-
tional numbers that can be rapidly approximated by rationals, more precisely:

Definition 1.4. An irrational number τ is called a Liouville number if for any
n ≥ 1 there exist integers p and q, q > 1, such that

(1.2) | τ − p/q | < 1/qn.

Clearly, an irrational number is Liouville if and only if it is not Diophantine. The
set of all Liouville numbers is a dense Gδ set in R, and it has zero Lebesgue measure.
Our main result, Theorem 1.5, shows that in the case of a Liouville rotation number
different types of dimensional properties of the invariant measure are realized. In
particular, pointwise and box dimensions may not exist, which is in contrast to the
Diophantine case as well as to the case of hyperbolic measures.

Theorem 1.5. Let τ be a Liouville number and let 0 ≤ β ≤ 1. There exists a C∞

circle diffeomorphism f with rotation number τ such that for its unique invariant
measure µ,

(1) dµ(x) = β and dµ(x) = 1 for µ-almost every x in S1,

(2) dimH µ = dimB µ = β and dimB µ = 1.

It is an interesting open question whether there exists a circle diffeomorphism with
irrational rotation number whose invariant measure has upper pointwise dimension
less than 1 on a set of positive measure.

Our constructions are based on a method developed by Anosov and Katok in [1]
to produce examples of diffeomorphisms with specific ergodic properties. In [8] we
used this method to construct examples of diffeomorphisms satisfying (1) and (2)
of Theorem 1.5. However, the qualitative nature of the arguments did not allow us
to construct examples for a given rotation number, or even describe explicitly the
rotation numbers in our examples. In this paper we use some ideas developed in
[4, 5] to make an explicit construction with specific quantitative estimates. This
allows us to produce the examples for all Liouville rotation numbers.

We note that any C2 circle diffeomorphism f with irrational rotation number
is topologically conjugate to the corresponding rotation. The conjugacy gives the
distribution function of the invariant measure µ. In the theorem above, µ is sin-
gular for β < 1, and so is the conjugacy. Thus the theorem implies that for any
Liouville rotation number there exists a diffeomorphisms with singular conjugacy.
Similar methods may be used to construct diffeomorphisms with a specific degree
of regularity of the conjugacy for any Liouville rotation number.
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2. preliminaries

2.1. Rotation number of a circle homeomorphism. (See [7] for more details.)
Let f be an orientation-preserving homeomorphism of S1, let π : R → S1 = R/Z be
the natural projection, and let F be a homeomorphism of R such that f ◦π = π ◦F .
Then the following limit exists and has the same value for all x:

τ(F ) = lim
|n|→∞

1
n

(F n(x)− x) .

The number τ(f) = π(τ(F )) is called the rotation number of f . If h : S1 → S1 is
a homeomorphism, then τ(h−1 ◦ f ◦ h) = τ(f). In particular, if f is topologically
conjugate to a rotation by τ then f has rotation number τ .

2.2. Hausdorff and box dimensions of sets and measures. (See [10] for more
details.) The upper and lower box dimensions of a set Z ⊂ Rk are defined as

dimB Z = lim sup
ε→0

log N(Z, ε)

log(1/ε)
and dimB Z = lim inf

ε→0

log N(Z, ε)

log(1/ε)
,

where N(Z, ε) is the least number of balls of diameter ε needed to cover Z.
For a number α ≥ 0, the α-Hausdorff measure of Z is

mH(Z, α) = lim
ε→0

inf
G

∑
U∈G

(diam U)α,

where the infimum is taken over all finite or countable coverings G of Z by open sets
with diameter at most ε. The Hausdorff dimension of Z is

dimH Z = inf {α : mH(Z, α) = 0} = sup {α : mH(Z, α) = ∞}.
The Hausdorff and upper and lower box dimensions of a Borel probability measure

µ are defined as follows:

(2.1)

dimH µ = inf { dimH Z : µ(Z) = 1 },
dimB µ = lim

ε→0
inf { dimB Z : µ(Z) > 1− ε },

dimB µ = lim
ε→0

inf { dimB Z : µ(Z) > 1− ε }.

It is known that dimH µ ≤ dimB µ ≤ dimB µ.

The following result by L.-S. Young [11] shows how the pointwise dimension of a
measure can be used to estimate its box and Hausdorff dimensions.

Theorem 2.1. Let µ be a Borel finite measure on Rm. Then

(1) If dµ(x) ≥ d for µ-almost every x then dimH µ ≥ d;

(2) If dµ(x) ≤ d for µ-almost every x then dimB µ ≤ d;

(3) If dµ(x) = dµ(x) = d for µ-almost every x, then

dimH µ = dimB µ = dimB µ = d.
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3. Proofs

Throughout this paper we identify the unit circle S1 = R/Z with the interval
[0, 1]. Let τ be an irrational number and let Rτ be the rotation by τ . The Lebesgue
measure is the only measure preserved by Rτ . Suppose that

f = h−1 ◦Rτ ◦ h,

where h is a homeomorphism. Then the unique invariant measure µ for f is the
push-forward of the Lebesgue measure λ by h−1, i.e. µ(A) = λ(hA). This means
that h is the distribution function for µ, i.e.

µ([x1, x2)) = h(x2)− h(x1)

for any interval [x1, x2) ⊂ S1, and hence

(3.1) µ(B(x, r)) = ∆h(x, r)
def
= h(x + r)− h(x− r).

In particular, if h is continuously differentiable, then for any x and r < 1/2,

2r · min
[x−r,x+r]

|h′| ≤ µ(B(x, r)) ≤ 2r · max
[x−r,x+r]

|h′|.

3.1. Proof of Proposition 1.3. The following result was established by M.-R.
Herman in [6]: any C2+ε circle diffeomorphism whose rotation number τ satisfies
the Diophantine condition (1.1) with some K > 0 and 0 < δ < ε is conjugate to the
rotation Rτ via a C1 diffeomorphism. It follows that any C∞ diffeomorphism with a
Diophantine rotation number is smoothly conjugate to the corresponding rotation.
This implies that there exist constants m and M such that 2mr ≤ µ(B(x, r)) ≤ 2Mr
for all x and all r < 1/2. Therefore, dµ(x) = 1 for every x ∈ S1, and hence

dimH µ = dimB µ = dimB µ = 1 by Theorem 2.1. �

3.2. Proof of Theorem 1.5. Let τ be a Liouville number. First we note that to
obtain the result for the case of β = 1 it suffices to take f = Rτ . The rotation
Rτ preserves the Lebesgue measure, which satisfies (1) and (2). From now on we
assume that 0 ≤ β < 1.

We obtain the diffeomorphism f as a limit of a sequence of diffeomorphisms

fn = h−1
n ◦Rτn ◦ hn,

where hn are C∞ diffeomorphisms of S1 and τn are rational numbers that converges
to τ . The sequences {hn} and {τn} are defined inductively. Once hn is selected, we
construct hn+1 in the form

hn+1 = An ◦ hn, where An = Id + an

is a diffeomorphism and an is a C∞ periodic function.
The diffeomorphisms fn will converge in the C∞ topology, and hn as well as h−1

n

will converge in C0. The homeomorphism h = limn→∞ hn will give the distribution
function of the invariant measure µ for f .
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We use the following norm of diffeomorphisms and the corresponding distance.

Definition 3.1. Let g be a Cn diffeomorphism of [0, 1]. We define a norm of g

‖g‖∗n = max |g(i)(x)|,

where the maximum is taken over all x and 0 ≤ i ≤ n, and we denote

‖g‖n = max { ‖g‖∗n, ‖g−1‖∗n }.

For two Cn diffeomorphisms g1 and g2, we set

dn(g1, g2) = max { ‖g1 − g2‖∗n, ‖g−1
1 − g−1

2 ‖∗n }.

In the three lemmas below we use Faà di Bruno’s formula, which generalizes the
chain rule to higher derivatives:

(3.2)
dn

dxn
f(g(x)) =

∑
cm1,...,mn f (m1+···+mn)(g(x))

n∏
j=1

(
g(j)(x)

)mj
,

where the constants cm1,...,mn depend only on m1, . . . ,mn, and the sum is taken over
all n-tuples (m1, . . . ,mn) of integers satisfying

(3.3) 1m1 + 2m2 + · · ·+ nmn = n and mi ≥ 0, i = 1, . . . , n.

The following lemma gives an estimate for the distance between two maps conju-
gate to two rotations via the same diffeomorphism.

Lemma 3.2. Let Rτ1 and Rτ2 be two circle rotations, and let h be a Cn+1 circle
diffeomorphism. Then

(3.4) dn(h−1 ◦Rτ1 ◦ h, h−1 ◦Rτ2 ◦ h) ≤ cn|τ1 − τ2| · ‖h‖n+1
n+1,

where the constant cn depends only on n.

Proof. We estimate max | dk

dxk (h−1 ◦Rτ1 ◦ h)− dk

dxk (h−1 ◦Rτ2 ◦ h)| for 0 ≤ k ≤ n. For
k = 0 we have

max |h−1(h(x) + τ1)− h−1(h(x) + τ2)| ≤ max |(h−1)′| · |τ1 − τ2| ≤ ‖h‖1 · |τ1 − τ2|.

For 1 ≤ k ≤ n formula (3.2) yields

dk

dxk
(h−1 ◦Rτ ◦ h)(x) =

dk

dxk

(
h−1(h(x) + τ)

)
=
∑

cm1,...,mk
(h−1)(m1+···+mk)(h(x) + τ)

k∏
j=1

(
h(j)(x)

)mj
.
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We estimate the difference between the corresponding terms in dk

dxk (h−1 ◦Rτ1 ◦h)(x)

and dk

dxk (h−1 ◦Rτ2 ◦ h)(x). By (3.3), m1 + · · ·+ mk ≤ k, and we have∣∣∣∣∣
k∏

j=1

(
h(j)(x)

)mj
(
(h−1)(m1+···+mk)(h(x) + τ1)− (h−1)(m1+···+mk)(h(x) + τ2)

)∣∣∣∣∣
≤ max

∣∣∣∣∣
k∏

j=1

(
h(j)(x)

)mj

∣∣∣∣∣ ·max |(h−1)(m1+···+mk+1)| · |τ1 − τ2|

≤ ‖h‖k
k · ‖h‖k+1 · |τ1 − τ2| ≤ ‖h‖k+1

k+1 · |τ1 − τ2|.

It follows that for any 0 ≤ k ≤ n,

max

∣∣∣∣ dk

dxk
(h−1 ◦Rτ1 ◦ h)(x)− dk

dxk
(h−1 ◦Rτ2 ◦ h)(x)

∣∣∣∣ ≤ cn|τ1 − τ2| · ‖h‖n+1
n+1,

where cn is the sum of the coefficients cm1,...,mn in (3.2). Since (h−1 ◦Rτ ◦ h)
−1

=
h−1 ◦R−τ ◦h, we have the same estimate for the inverses of the functions, and (3.4)
follows. �

When constructing the diffeomorphism hn+1 = An ◦ hn, we choose the function
An in a specific form, as in the following lemma.

Lemma 3.3. Let s and δ be positive numbers such that 1/s is an integer and δ < s/2.
Then there exists a C∞ diffeomorphism A = As,δ of [0, 1] such that

(1) A = Id + a, where a = as,δ is a non-negative C∞ function of period s,
(2) A(0) = 0, A(δ) = s− δ, and A(s) = s,

(3) δ/(2s) ≤ A′(x) ≤ 2s/δ for all x,

(4) for each n ≥ 0 there exists a constant ρn that does not depend on δ and s

such that ‖A‖n ≤ ρn/δ
n2

.

Conditions (1), (2), and (3) guarantee that A is a diffeomorphism.

Proof. First we construct the function a on the interval [0, δ]. Let g be a C∞ function
on [0, 1] such that g(x) = 0 in a neighborhood [0, ε) of 0, g(x) = 1 in a neighborhood
(1 − ε, 1] of 1, and 0 ≤ g′(x) ≤ 2 for all x. We obtain the function a on [0, δ] by
rescaling g:

a(x) = (s− 2δ) g(x/δ) for x ∈ [0, δ].

Then a(x) = 0 in a neighborhood of 0, a(x) = s − 2δ in a neighborhood of δ, and
0 ≤ a′(x) ≤ 2(s−2δ)/δ = 2s/δ−4. This implies that A(x) = x in a neighborhood of
0, A(δ) = s−δ, A′(x) = 1 in a neighborhood of δ, and 1 ≤ A′(x) ≤ 2s/δ−3 ≤ 2s/δ
for all x in [0, δ].
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Now we obtain the graph of the function A on [δ, s] by reflecting its graph on [0, δ]
with respect to the line y = s− x, i.e.

(3.5) A(x) = s− A−1(s− x) for x in [s− δ, s].

It follows from the symmetry of the graph that A(x) = x in a neighborhood of s
and 1 ≥ A′(x) ≥ δ/2s for all x in [s−δ, s]. On this interval, we set a(x) = A(x)−x.
Clearly, a(x) ≥ 0 for all x and a(x) = 0 in a neighborhood of s. Then we extend a
to [0, 1] by periodicity, and obtain A = Id + a on [0, 1]. Thus we have constructed a
function A satisfying (1), (2), and (3).

Now we verify (4) for A on [0, δ]. Then (3.5) implies that (4) is also satisfied for
A on [δ, s]. Since max[0,δ] |a(n)| ≤ max[0,1] |g(n)| /δn, we have

(3.6) max
[0,δ]

|A(n)| ≤ (max
[0,1]

|g(n)|+ 1) /δn def
= κn/δ

n for any n ≥ 0.

Let G be the inverse function for A|[0,δ]. We show using induction that for any
n ≥ 0 there exists a constant ξn independent of δ and s such that

max
[0,1]

|G(n)| ≤ ξn/δ
n2

and ξn ≥ ξn−1 ≥ · · · ≥ ξ0.

Clearly, G(x) ≤ 1 and G′(x) ≤ 1 ≤ 1/δ for all x. Thus the statement holds for
k = 0 and k = 1. Suppose that it holds for all 0 ≤ k ≤ n − 1. For n ≥ 2,
dn

dxn G(A(x)) = dn

dxn x = 0, and it follows from (3.2) that

G(n)(A(x)) · (A′(x))n = −
∑

cm1,...,mn G(m1+···+mn)(A(x))
n∏

j=1

(
A(j)(x)

)mj
,

where the sum is taken over all n-tuples (m1, . . . mn) such that 1m1 + · · ·+nmn = n
and m1 6= n. This implies that m1 + · · ·+ mn ≤ n− 1, and hence

|G(m1+···+mn)(A(x))| ≤ ξn−1/δ
(n−1)2

by the induction assumption. Also,∣∣∣∣∣
n∏

j=1

(
A(j)(x)

)mj

∣∣∣∣∣ ≤
n∏

j=1

(
κj/δ

j
)mj =

(
n∏

j=1

κ
mj

j

)
/δ1m1+2m2+···+nmn ≤

(
n∏

j=1

κn
j

)
/δn.

Using the estimates above, we obtain

|G(n)(A(x)) · (A′(x))n| ≤ ξn/δ
(n−1)2+n ≤ ξn/δ

n2

,

where ξn ≥ ξn−1 is a constant independent of s and δ. Since A′(x) ≥ 1 on [0, δ], it
follows that

|G(n)(A(x))| ≤ ξn/δ
n2

for all x ∈ [0, δ].

Let ρn = max {κ0, . . . , κn, ξn}, where κ0, . . . κn are as in (3.6). Then

‖A‖∗n ≤ ρn/δ
n ≤ ρn/δ

n2
, ‖A−1‖∗n = ‖G‖∗n ≤ ρn/δ

n2
, and thus ‖A‖n ≤ ρn/δ

n2
.

�
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Lemma 3.4. Let A = As,δ be a function as in Lemma 3.3. Then for any n ≥ 0 and
any Cn diffeomorphism h

(3.7) ‖A ◦ h‖n ≤ c̃(h, n)/δn2

,

where the constant c̃(h, n) depends on h and n, but not on δ and s.

Proof. Let 0 ≤ k ≤ n. Each term of the sum representing (A ◦ h)(k) is a product
of a derivative of A of order at most k and at most k derivatives of h, see (3.2).
Therefore, each term can be estimated by ‖A‖k · ‖h‖k

k ≤ ‖A‖n · ‖h‖n
n, and hence

‖A ◦ h‖∗n ≤ cn‖A‖n · ‖h‖n
n ≤ cn‖h‖n

n · ρn/δ
n2

,

where cn is the sum of the constants cm1,...,mn in (3.2) and ρn is as in Lemma 3.3 (4).
Each term of (h−1 ◦ A−1)(k) can be estimated as follows:

|(h−1)(m1+···+mk)(A−1(x))
k∏

j=1

(
(A−1)(j)(x)

)mj | ≤ ‖h‖k · (ρ1/δ
12

)m1 . . . (ρk/δ
k2

)mk

≤ ‖h‖k · ρ1 . . . ρk/δ
12m1+22m2+···+k2mk ≤ ‖h‖k · ρ1 . . . ρk/δ

k2 ≤ ‖h‖n · ρ1 . . . ρn/δ
n2

since 11m1 + 22m2 + · · ·+ k2mk ≤ k(1m1 + 2m2 + · · ·+ kmk) = k2. It follows that

‖h−1 ◦ A−1‖∗n ≤ cn‖h‖n · ρ1 . . . ρn/δ
n2

.

Thus ‖A ◦ h‖n ≤ c̃(h, n)/δn2
. �

For the rest of the proof we consider the cases of β = 0 and of 0 < β < 1
separately.

The case of β = 0.

We construct the sequences {τn}∞n=1 and {hn}∞n=1 inductively. Let h1 be the
identity map, τ1 be a rational number close to τ , and s1 = 1/2. Suppose that a
number τn−1 = pn−1/qn−1, a function an−1 of period sn−1, and hence diffeomorphisms
An−1 = Id + an−1 and hn = An−1 ◦ hn−1 are selected. We denote

Mn = max
[0,1]

h′n and mn = min
[0,1]

h′n = 1/max[0,1](h
−1
n )′.

Clearly, Mn ≥ 1 and 0 < mn ≤ 1 for all n ≥ 1, and Mn →∞, mn → 0 as n →∞.

We choose a rational number τn = pn/qn, numbers sn and δn, a function an of a
period sn, and a function An such that
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(3.8)

(i) | τ − τn | ≤ | τ − τn−1 |,

(ii) | τ − τn | = | τ − pn/qn | ≤ 1/q3n4

n ,

(iii) qn ≥ max { 1/sn−1, 1/mn, (3Mn)n, cn, c̃ (hn, n + 1) },
where cn is as in (3.4) and c̃ (hn, n + 1) is as in (3.7),

(iv) sn = sn−1/qn, hence sn ≤ s2
n−1 and sn ≤ 1/2n,

(v) δn = sn
n, in particular, δn < sn/2,

(vi) an and An are as in Lemma 3.3 with δ = δn and s = sn.

Conditions (i), (ii), and (iii) can be satisfied since τ is a Liouville number. Condition
(iv) ensures that the maps An and Rτn commute, and hence

h−1
n ◦Rτn ◦ hn = h−1

n ◦ A−1
n ◦ An ◦Rτn ◦ hn

= h−1
n ◦ A−1

n ◦Rτn ◦ An ◦ hn = (An ◦ hn)−1 ◦Rτn ◦ (An ◦ hn)

Conditions (iii), (iv), and (v) imply that 1/δn = 1/sn
n = qn

n/sn
n−1 ≤ q2n

n . Using this
as well as (3.4) and (3.7) we obtain

(3.9)

dn(fn+1, fn) = dn

(
h−1

n+1 ◦Rτn+1 ◦ hn+1, h−1
n ◦Rτn ◦ hn

)
= dn

(
(An ◦ hn)−1 ◦Rτn+1 ◦ (An ◦ hn), (An ◦ hn)−1 ◦Rτn ◦ (An ◦ hn)

)
≤ cn|τn+1 − τn| · ‖An ◦ hn‖n+1

n+1 ≤ 2cn|τ − τn| ·
(
c̃ (hn, n + 1)/δ(n+1)2

n

)n+1

≤ 2qn(1/q3n4

n )
(
qn · q2n(n+1)2

n

)n+1

≤ 2(1/q3n4

n ) q2n(n+1)3+n+2
n ≤ 1/2n

for all sufficiently large n. Since dm(fn+1, fn) ≤ dn(fn+1, fn) ≤ 1/2n for n ≥ m,
it follows that the sequence {fn} converges in the Cm-topology for any m, i.e. it
converges in the C∞ topology.

Now we establish the convergence of the diffeomorphisms hn. We recall that
An = Id + an is a diffeomorphism, where an is a C∞ function of period sn, and 1/sn

is an integer. It follows that max[0,1] |An − Id | ≤ sn and max[0,1] |A−1
n − Id | ≤ sn.

Since hn+1 = An ◦ hn, we estimate

max
[0,1]

|hn+1 − hn| = max
[0,1]

| (An − Id) ◦ hn| ≤ sn, and

max
[0,1]

|h−1
n+1 − h−1

n | = max
[0,1]

|h−1
n ◦ (A−1

n − Id)| ≤ max
[0,1]

(h−1
n )′ · sn = (1/mn)sn ≤ sn−1

by (3.8) (iii) and (iv). This implies that d0(hn+1, hn) ≤ sn−1 , and since sn ≤ 1/2n,
it follows that the sequence of diffeomorphisms {hn} converges to a homeomorphism
h with respect to the distance d0. Moreover, since sn ≤ s2

n−1 we have

(3.10) max
[0,1]

|h− hn| ≤
∑∞

k=n
sk ≤ 2sn.
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Now we prove the dimensional properties of the invariant measure µ with distri-
bution function h. By the construction, most of the growth of An on the interval
[0, 1] is concentrated on the union of intervals [ isn, isn + δn]. Let

(3.11) Ẽn =
⋃(1/sn)−1

i=0
[ isn, isn + δn] and En = h−1

n (Ẽn).

Then hn+1(En) = (An ◦ hn)(h−1
n (Ẽn)) = An(Ẽn).

Since Ẽn consists of 1/sn intervals [ isn, isn+δn] and A(isn+δn)−A(isn) = sn−δn,
the total growth of An on Ẽn is

(sn − δn)(1/sn) = 1− δn/sn = 1− sn
n/sn ≥ 1− sn−1

n ≥ 1− sn,

and the total growth of hn+1 on En is the same. By (3.10), ∆h ≥ ∆hn − 4sn+1 on
each of the 1/sn intervals in En. Since sn+1 ≤ s2

n and sn ≤ 1/2n by (3.8) (iv), we
estimate that the total growth of h on the set En is at least

1− sn − 4sn+1(1/sn) ≥ 1− sn − 4s2
n/sn = 1− 5sn ≥ 1− 5/2n.

Thus, for the measure µ with distribution function h,

(3.12) µ(En) ≥ 1− 5/2n.

Now we show that dµ(x), the lower pointwise dimension of µ at x, is 0 for µ-almost
every x. We recall that mn = min[0,1] h

′
n. The length of each interval I in the set

En is bounded above by δn/mn, since the length of hn(I) is δn. Let

rn = δn/mn = sn
n/mn.

Let x be a point in En. Then the interval [x−rn, x+rn] contains one of the intervals
in E and hence ∆hn+1(x, rn) ≥ sn − δn. It follows from (3.10) that

∆h(x, rn) ≥ ∆hn+1(x, rn)− 4sn+1 ≥ sn − δn − 4sn+1 ≥ sn/2

for all sufficiently large n since δn = sn
n and sn+1 ≤ s2

n. Therefore,

log ∆h(x, rn)

log rn

≤ log(sn/2)

log rn

=
log(sn/2)

log(sn
n/mn)

≤ 2

n
.

The last inequality is equivalent to sn ≤ m
2/n
n /2 , and it follows from (3.8) that

sn = sn−1/qn ≤ sn−1mn ≤ mn/2.

Thus for any sufficiently large n there exists rn > 0 such that

log µ(B(x, rn))

log rn

=
log ∆h(x, rn)

log rn

≤ 2

n
for any x ∈ En,

and rn → 0 as n → ∞. Let x be a point in [0, 1]. If follows that dµ(x) = 0
provided that for any m there exist n ≥ m such that x ∈ En. Otherwise, x is in
J =

⋃∞
m=1

⋂∞
n=m([0, 1] − En). It follows from (3.12) that µ(

⋂∞
n=m([0, 1] − En)) = 0

and hence µ(J) = 0. We conclude that

(3.13) dµ(x) = 0 for µ-almost every x ∈ S1.
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Now we show that dµ(x), the upper pointwise dimension of µ at x, equals 1 for
µ-almost all x. We recall that Mn = max[0,1] h

′
n, and hence ∆hn(x, r) ≤ 2rMn. We

take r̃n = (3Mn)−n and note that by (3.8) sn = sn−1/qn < 1/qn ≤ 1/(3Mn)n ≤ r̃n.
It follows that

∆h(x, r̃n) ≤ ∆hn(x, r̃n) + 4sn ≤ 2r̃nMn + 4r̃n ≤ 3Mnr̃n

for all sufficiently large n. Hence for all x,

log µ(B(x, r̃n))

log r̃n

=
log ∆h(x, r̃n)

log r̃n

≥ log(3Mnr̃n)

log r̃n

= 1 +
log(3Mn)

log((3Mn)−n)
= 1− 1

n
.

Clearly, r̃n → 0 as n → ∞, and we conclude that dµ(x) ≥ 1 for all x. Since µ is a

Borel probability measure on S1, dµ(x) ≤ 1 for µ-almost every x ([8] Lemma 2.1).

Thus dµ(x) = 1 for µ-almost all x. Combining this with (3.13) we obtain

dµ(x) = 0 and dµ(x) = 1 for µ-almost every x.

This completes the proof of the first statement of Theorem 1.5 for the case of β = 0.

Now we prove the results for the box and Hausdorff dimensions of µ (see Section
2.2 for the definitions). First we show that dimB µ = 1. For r̃n as above, we have

µ(B(x, r̃n)) ≤ r̃ 1−1/n
n for any x ∈ S1.

Let Z be a set in S1 with µ(Z) > 0. Then at least µ(Z) · r̃−(1−1/n)
n balls of radius

r̃n are needed to cover Z. Thus,

log N(Z, r̃n)

log(1/r̃n)
≥ log (µ(Z) r̃

−(1−1/n)
n )

− log r̃n

= 1− 1

n
− log µ(Z)

log r̃n

−→
n→∞

1.

Since r̃n → 0 as n → ∞, this implies that that dimB(Z) = 1. Thus, dimB(Z) = 1
for any set Z with µ(Z) > 0, and hence dimB µ = 1 by the definition (2.1).

Now we prove that dimB µ, the lower box dimension of µ, equals 0. Let Gk =⋂∞
n=k En. By (3.12), µ(En) ≥ 1− 5/2n for each n, and hence

µ(Gk) ≥ 1− 5/2k−1 → 1 as k →∞.

We recall that for each n the set En consists of 1/sn intervals of length at most rn,
and log sn/ log rn → 0 as n →∞. This implies that each En, and hence Gk, can be
covered by at most 1/sn balls of diameter rn, i.e. N(Gk, rn) ≤ 1/sn. Therefore,

dimB Gk = lim inf
ε→0

log N(Gk, ε)

log(1/ε)
≤ lim inf

n→∞

log N(Gk, rn)

log(1/rn)
≤ lim

n→∞

log sn

log rn

= 0

for any k > 0. Thus for any ε > 0 there exists a set G such that µ(G) > 1 − ε
and dimB G = 0, which implies that dimB µ = 0 by the definition (2.1). And since
0 ≤ dimH µ ≤ dimB µ, it follows that the Hausdorff dimension of µ is also 0.

This completes the proof of the theorem for the case of β = 0.
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The case of 0 < β < 1.

The proof for this case uses the same approach as the proof for the case of β = 0.
However, some modifications are needed to ensure that the lower pointwise dimen-
sion is β > 0.

Let γ = (1 − β)/2, then γ > 0 and β + γ/n < 1 for any n ≥ 1. We construct
the sequences {τn}∞n=1 and {hn}∞n=1 inductively. Let h1 be the identity map, τ1 be
a rational number close to τ , and s1 be a number such that 1/s1 is an integer and

δ1 = s
1/(β+γ)
1 < s1/2. Suppose that τn−1 = pn−1/qn−1, a function an−1 of period

sn−1, and hence An−1 and hn are selected. As before, we set Mn = max[0,1] h
′
n and

mn = min[0,1] h
′
n. We choose numbers τn = pn/qn, sn and δn, and functions an of a

period sn and An such that

(3.14)

(i) | τ − τn | ≤ | τ − τn−1 |,

(ii) | τ − τn | = | τ − pn/qn | ≤ 1/qn4

n ,

(iii) qn ≥ max { 1/sn−1, 1/mn, (3Mn)n, cn, c̃ (hn, n + 1) },
where cn is as in (3.4) and c̃ (hn, n + 1) is as in (3.7),

(iv) sn = sn−1/qn, hence sn ≤ s2
n−1 and sn ≤ 1/2n,

(v) sn ≤ 2−n−1sn−1, and sγ
n ≤ min { 1/(Mn + 1)n, (mn/(2Mn))n },

(vi) δn = mn s1/(β+γ/n)
n , hence δn < sn/2,

(vii) an and An are as in Lemma 3.3 with δ = δn and s = sn.

Condition (v) is only used in the proof of Lemma 3.5 below. Clearly, it can be
satisfied by choosing a sufficiently large qn. We note that qn ≥ c̃ (hn, n + 1) ≥
‖h‖n ≥ max |h−1| = 1/mn, and hence

1

δn

=
1

mns
1/(β+γ/n)
n

=
q
1/(β+γ/n)
n

mns
1/(β+γ/n)
n−1

≤ q
2/(β+γ/n)
n

mn

≤ q
2/β
n

mn

≤ q(2/β)+1
n ≤ q3/β

n .

Thus we can obtain an estimate similar to (3.9):

dn(fn+1, fn) = . . . ≤ 2cn|τ − τn| ·
(
c̃ (hn, n + 1)/δ(n+1)2

n

)n+1

≤

2qn(1/qn4

n )
(
qn(q3/β

n )(n+1)2
)n+1

≤ 2(1/qn4

n ) q(3/β)(n+1)3+n+2
n ≤ 1/2n

for all sufficiently large n, and establish convergence of the sequence {fn} in the C∞

topology. The convergence of {hn} with respect to the distance d0 can be shown as
before.

We define the sets Ẽn and En be as in (3.11). The total growth of An on Ẽn, and
hence the total growth of hn+1 on En is

(sn − δn)(1/sn) = 1− δn/sn ≥ 1− s(1/(β+γ/n))−1
n .
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Since En consists of 1/sn intervals, max |h−hn+1| ≤ 2sn+1, and sn+1 ≤ s2
n, the total

growth of h on En is at least

1− s(1/(β+γ/n))−1
n − 4sn+1/sn ≥ 1− s(1/(β+γ/n))−1

n − 4sn ≥ 1− 5sσ
n ≥ 1− 5/2nσ,

where σ = min { (1/(β + γ)− 1, 1 } > 0. Thus, for the measure µ with distribution
function h,

(3.15) µ(En) ≥ 1− 5/2nσ.

Now we show that dµ(x) = β for almost all x. We take

(3.16) rn = δn/mn = s1/(β+γ/n)
n , then

(3.17) rn < sn, sn = rβ+γ/n
n , and hence

log sn

log rn

= β +
γ

n
.

Let x be a point in En. Then

∆h(x, rn) ≥ ∆hn+1(x, rn)− 4sn+1 ≥ sn − δn − 4sn+1 ≥ sn/2

for all sufficiently large n. Therefore

log ∆h(x, rn)

log rn

≤ log(sn/2)

log rn

=
log sn

log rn

− log 2

log rn

= β − log 2

log rn

≤ β +
1

n

since rn < sn ≤ 1/2n. It follows as before that dµ(x) ≤ β for µ-almost every x.

To show that dµ(x) ≥ β we will prove that the function h is Hölder continuous

with exponent β. Then for any x and r > 0, ∆h(x, r) ≤ C(2r)β and hence

log µ(B(x, r))

log r
=

log ∆h(x, r)

log r
≥ log(C2β) + β log r

log r
−→
r→0

β.

This implies that dµ(x) ≥ β for all x, and hence dµ(x) = β for µ-almost every x.

Lemma 3.5. The function h is Hölder continuous with exponent β.

Proof. We show using induction that

|hn(x)− hn(y) | ≤ |x− y|β for all x, y with |x− y| ≤ sn−1, and

|hn(x)− hn(y) | ≤ (3− 2−n)|x− y|β for all x, y with |x− y| ≥ sn−1.

Clearly, this is true for h1 = Id. Suppose that it holds for hn.

Recall that hn+1 = An ◦ hn, and the diffeomorphism An is of the form Id + an,
where an ≥ 0 is a function of period sn. It follows that x ≤ An(x) ≤ x + sn for any
point x in [0, 1]. Hence, |An(x)− An(y)| ≤ |x− y|+ sn for any x and y.

If |x− y| ≥ sn−1 we obtain

|hn+1(x)− hn+1(y)| = |An(hn(x))− An(hn(y))| ≤ |hn(x)− hn(y)|+ sn

≤ (3− 2−n) |x− y|β + 2−n−1 |x− y|β = (3− 2−n−1) |x− y|β
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since by (3.14) sn ≤ 2−n−1sn−1 ≤ 2−n−1|x− y| ≤ 2−n−1|x− y|β .

If sn ≤ |x− y| ≤ sn−1 we have

|hn+1(x)− hn+1(y)| ≤ |hn(x)− hn(y)|+ sn ≤ |x− y|β + sn ≤ 2 |x− y|β.

It follows from (3.14) and (3.17) that r
γ/n
n ≤ s

γ/n
n ≤ min {1/(Mn+1), mn/(2Mn)}.

We use this together with the fact that β + γ/n < 1 for all n in the two estimates
below. Suppose that rn ≤ |x− y| ≤ sn. Then

|hn+1(x)− hn+1(y) | ≤ |hn(x)− hn(y)|+ sn ≤ Mn|x− y|+ sn

≤ (Mn + 1) sn = (Mn + 1) rβ+γ/n
n ≤ rβ

n ≤ |x− y|β.

Finally, for |x− y| ≤ rn we have

|hn+1(x)− hn+1(y) | ≤ max h′n+1 · |x− y| = max A′
n ·max h′n · |x− y|

≤ 2sn

δn

·Mn · |x− y| =
r

β+γ/n
n

rnmn

· 2Mn · |x− y| ≤ 2Mn

mn

· |x− y|β+γ/n

≤ 2Mn

mn

· rγ/n
n · |x− y|β ≤ |x− y|β.

Thus, each function hn satisfies |hn(x)−hn(y)| ≤ 3 |x− y|β for all x and y. Since
the sequence {hn} converges to h, it follows that

|h(x)− h(y)| ≤ 3 |x− y|β for all x and y.

�

The proof of the fact that dµ(x) = 1 for µ-almost every x does not require any
modifications. Thus

dµ(x) = β and dµ(x) = 1 for µ-almost every x.

The same argument as for β = 0 shows that dimB µ = 1 for all x.

Now we show that dimH µ = dimB µ = β. Since dµ(x) = β for almost all x, it
follows from Theorem 2.1 that dimH µ ≥ β. So it remains to show that dimBµ ≤ β.
As before, let Gk =

⋂∞
n=k En. Since Gk ⊂ En and En consists of 1/sn intervals of

length at most rn, we have N(Gk, rn) ≤ 1/sn. As log sn/ log rn → β as n →∞, we
obtain

dimB Gk ≤ lim
n→∞

log N(Gk, rn)

log(1/rn)
≤ lim

n→∞

log sn

log rn

= β

for any k > 0. It follows from (3.15) that µ(Gk) → 1 as k → ∞, and hence
dimB µ ≤ β.

This completes the proof of the theorem.
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