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Abstract. We consider an irreducible Anosov automorphism L of a torus Td

such that no three eigenvalues have the same modulus. We show that L is locally
rigid, that is, L is C1+Hölder conjugate to any C1-small perturbation f such that
the derivative Dpf

n is conjugate to Ln whenever fnp = p. We also prove that
toral automorphisms satisfying these assumptions are generic in SL(d,Z). Ex-
amples constructed in the Appendix show importance of the assumption on the
eigenvalues.

1. Introduction

Hyperbolic dynamical systems have been one of the main objects of study in
smooth dynamics. Basic examples of such systems are given by Anosov automor-
phisms of tori: for a hyperbolic matrix F in SL(d,Z) the map F : Rd → Rd projects
to an automorphism of the torus Td = Rd/Zd. More generally, a diffeomorphism f of
a compact Riemannian manifold M is called Anosov if there exist a decomposition
of the tangent bundle TM into two f -invariant continuous distributions Es,f and
Eu,f , and constants C > 0, λ > 0, such that for all n ∈ N,

‖Dfn(v)‖ ≤ Ce−λn‖v‖ for all v ∈ Es,f ,

‖Df−n(v)‖ ≤ Ce−λn‖v‖ for all v ∈ Eu,f .

The distributions Es,f and Eu,f are called stable and unstable distributions of f .
Structural stability is a fundamental property of hyperbolic systems. If g is an

Anosov diffeomorphism and f is sufficiently C1 close to g, then f is also Anosov and
is topologically conjugate to g, i.e. there is a homeomorphism h of M such that

g = h−1 ◦ f ◦ h.

In this paper we study regularity of the conjugacy h. It is well known that in
general h is only Hölder continuous. A necessary condition for it to be C1 is that
the derivatives of the return maps of f and g at the corresponding periodic points
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are conjugate. Indeed, differentiating gn = h−1 ◦fn ◦h at a periodic point p = fn(p)
gives

Dpg
n = (Dph)−1 ◦Dh(p)f

n ◦Dph.

A diffeomorphism g is said to be locally rigid if for any C1-small perturbation f
this condition is also sufficient for the conjugacy to be a C1 diffeomorphism. The
problem of local rigidity has been extensively studied and Anosov systems with
one-dimensional stable and unstable distributions were shown to be locally rigid
[dlL87, dlLM88, dlL92, P90].

Local rigidity problem in higher dimensions is much less understood. Examples
where the periodic condition is not sufficient were constructed by R. de la Llave
[dlL92, dlL02]. However, the one-dimensional results were extended in two direc-
tions. In the case when g is conformal on the full stable and unstable distributions,
local rigidity was established for some classes of systems [dlL02, KS03, dlL04, KS09].

In a different direction, local rigidity was proved in [G08] for an irreducible Anosov
toral automorphism L : Td → Td with real eigenvalues of distinct moduli, as well
as for some nonlinear systems with similar structure. We recall that L is said
to be irreducible if it has no rational invariant subspaces, or equivalently if its
characteristic polynomial is irreducible over Q. It follows that all eigenvalues of L
are simple. An important feature in this case is that Rd splits into a direct sum of
one-dimensional L-invariant subspaces. This splitting gives rise to the corresponding
linear foliations on Td which are expanded or contracted by L at different rates.
Such a splitting persist for C1-small perturbations of L and provides a framework
for studying regularity of the conjugacy.

Examples in [G08] show that irreducibility of L is a necessary assumption for local
rigidity except when L is conformal on the stable and unstable distributions. The
main result of this paper is the following theorem which establishes local rigidity for
a broad class of irreducible toral automorphisms. We give a concise proof that uses
techniques from [G08, dlL02, KS09] along with some new results on conformality of
cocycles from [KS10].

Theorem 1.1. Let L : Td → Td be an irreducible Anosov automorphism such that
no three of its eigenvalues have the same modulus. Let f be a C1-small perturbation
of L such that the derivative Dpf

n is conjugate to Ln whenever p = fnp. Then f is
C1+Hölder conjugate to L.

We note that irreducibility of L implies that it is diagonalizable over C. Hence
assuming that Dpf

n is conjugate to Ln is equivalent to assuming that Dpf
n is

also diagonalizable over C and has the same eigenvalues as Ln. The only extra
assumption in the theorem ensures that the dimensions of the subspaces in the
splitting by rates of expansion/contraction are not higher than two. It allows L to
have pairs of complex conjugate eigenvalues as well as pairs ±λ.
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In Section 3, we show that toral automorphisms satisfying the assumptions of the
theorem are generic in the following sense. Consider the set of matrices in SL(d,Z) of
norm at most T . Then the proportion of matrices corresponding to automorphisms
that do not satisfy our assumptions goes to zero as T → ∞. Moreover, it can be
estimated by c T−δ for some δ > 0.

Example A.3 in the Appendix yields an Anosov toral automorphism conformal on
a three-dimensional invariant subspace and a perturbation with conjugate periodic
data whose derivative is not uniformly quasi-conformal on the corresponding three-
dimensional invariant distribution. This, in particular, precludes smoothness of the
conjugacy. The automorphism is reducible, so the example does not prove that the
extra assumption is indeed necessary for our theorem. However, it clearly shows that
current methods cannot be pushed further to give the result without this assumption.

2. Proof of Theorem 1.1

2.1. Notation and outline of the proof. We denote by Es,L and Eu,L the stable
and unstable distributions of L. Since f is C1 close to L, f is also Anosov and we
denote its stable and unstable distributions by Es,f and Eu,f . They are tangent to
the stable and unstable foliations W s,f and W u,f respectively (see, e.g. [KH95]).
The leaves of these foliations are C∞ smooth, but in general the distributions Es,f

and Eu,f are only Hölder continuous transversally to the corresponding foliations.
Let 1 < ρ1 < ρ2 < · · · < ρl be the distinct absolute values of the unstable

eigenvalues of L, and let

Eu,L = EL
1 ⊕ EL

2 ⊕ · · · ⊕ EL
l

be the corresponding splitting of the unstable distribution.
By the assumption, the distributions EL

k , k = 1, . . . , l, are either one- or two-
dimensional. As f is C1-close to L, the unstable distribution Eu,f splits into a
direct sum of l invariant Hölder continuous distributions close to the corresponding
distributions for L:

Eu,f = Ef
1 ⊕ Ef

2 ⊕ · · · ⊕ Ef
l

(see, e.g. [Pes04, Section 3.3]). We also consider the distributions

Ef
(i,j) = Ef

i ⊕ Ef
i+1 ⊕ . . .⊕ Ef

j .

For any 1 < k ≤ l, the distribution Ef
(k,l) is a fast part of the unstable distribution

and thus it integrates to a Hölder foliation W f
(k,l) with C∞ smooth leaves (see,

e.g. [Pes04, Section 3.3]). Moreover, the leaves W f
(k,l)(x) depend C∞ smoothly on x

along the unstable leaves W u,f (see, e.g. [KS07, Proposition 3.9]).

Notation. We say that an object is C1+ if it is C1 and its differential is Hölder
continuous with some positive exponent. We say that a homeomorphism h is C1+
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along a foliation F if the restrictions of h to the leaves of F is C1+ and the derivative
Dh|F is Hölder continuous on the manifold.

For any 1 ≤ k < l the distribution Ef
(1,k) is a slow part of the unstable distribu-

tion. It also integrates to an f -invariant foliation W f
(1,k) with C1+ smooth leaves.

One way to see this is to view L as a partially hyperbolic automorphism with the
splitting Es,L ⊕ EL

(1,k) ⊕ El
(k+1,l). Then, by structural stability for partially hyper-

bolic systems [HPS77, Theorem 7.1] one gets that for a C1-small perturbation f

the “central” foliation survives; that is, Ef
(1,k) integrates to a foliation W f

(1,k). For

an alternative simple and short proof that uses specifics of our setup and also gives
unique integrability (as opposed to existence of some foliation tangent to Ef

(1,k))

see [G08, Lemma 6.1].
Thus within the unstable distribution Eu,f there are flags of weak and strong

distributions
Ef

1 = Ef
(1,1) ⊂ Ef

(1,2) ⊂ . . . ⊂ Ef
(1,l) = Eu,f ,

Ef
l = Ef

(l,l) ⊂ Ef
(l−1,l) ⊂ . . . ⊂ Ef

(1,l) = Eu,f .

Since both flags are uniquely integrable and the leaves of the corresponding foliations
are at least C1+, for any 1 ≤ k ≤ l the distribution Ef

k = Ef
(1,k)∩Ef

(k,l) also integrates

uniquely to a Hölder foliation

V f
k = W f

(1,k) ∩W f
(k,l)

with C1+ smooth leaves. Similarly, the distributions Ef
(i,j) = Ef

(1,j) ∩ Ef
(i,l), 1 ≤ i ≤

j ≤ l, integrate to Hölder foliations

W f
(i,j) = W f

(1,j) ∩W f
(i,l).

We use similar notation for the automorphism L: EL
(i,j) = EL

i ⊕ . . . ⊕ EL
j , and

WL
(i,j) and V L

i are the linear foliations tangent to EL
(i,j) and EL

i respectively.

Since L is Anosov and f is C1 close to L, there exists a bi-Hölder continuous
homeomorphism h : Td → Td close to the identity in C0 topology such that

h ◦ L = f ◦ h.

The conjugacy h takes the flag of weak foliations for L into the corresponding weak
flag for f :

Lemma 2.1. For any 1 ≤ k ≤ l, h(WL
(1,k)) = W f

(1,k).

The proof is the same as that of Lemma 6.3 in [G08]. We give the argument for
the reader’s convenience.

Proof. Let h̃, f̃ and L̃ be the lifts of h, f and L to Rd. Similarly we use the tilde
sign to denote lifts of various foliations.
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Since h̃(W̃ u,L) = W̃ u,f we have that h̃(W̃L
(1,k)) ⊂ W̃ u,f . Let y ∈ W̃ u,L(x), then

y ∈ W̃L
(1,k)(x) if and only if d(L̃n(x), L̃n(y)) ≤ ρn

k d(x, y) for all n > 0,

where d is the usual metric on Rd. Since h̃ is C0 close to Id we further get that
y ∈ W̃L

(1,k)(x) if and only if

d(f̃n(h(x)), f̃n(h(y))) = d(h̃(L̃n(x)), h̃(L̃n(y))) ≤ ρn
kd(x, y) + c for all n > 0.

The latter condition is in turn equivalent to h̃(y) ∈ W̃ f
(1,k)(h(x)). ¤

We note that Lemma 2.1 holds for any sufficiently C1-small perturbation of an
Anosov automorphism of Td.

The coarse strategy of the proof of Theorem 1.1 is showing inductively that h is
C1+ along WL

(1,k) for any k and thus along WL
(1,l) = W u(L). By the same argument,

h is C1+ along W s(L) and hence h is C1+ by Journé Lemma:

Lemma 2.2 (Journé [J88]). Let Mj be a manifold and F s
j , Fu

j be continuous
transverse foliations on Mj with uniformly smooth leaves, j = 1, 2. Suppose that
h : M1 →M2 is a homeomorphism that maps F s

1 into F s
2 and Fu

1 into Fu
2 . More-

over, assume that the restrictions of h to the leaves of these foliations are uniformly
Cr+ν, r ∈ N, 0 < ν < 1. Then h is Cr+ν.

The main steps of the proof of the Theorem are the following statements

• h(V L
i ) = V f

i

• h is a C1+ diffeomorphism along V L
i

Their proofs are interdependent and organized into an inductive process given by
Propositions 2.3 and 2.4.

Proposition 2.3. If h(V L
i ) = V f

i , then h is a C1+ diffeomorphism along V L
i .

The proof of this proposition is given in Subsection 2.2 below. Since V L
1 = WL

(1,1),

Lemma 2.1 implies that h(V L
1 ) = V f

1 , and then Proposition 2.3 yields that h is C1+

along V L
1 . This provides the base of the induction. The inductive step is given by

the following proposition.

Proposition 2.4. Suppose that h(V L
i ) = h(V f

i ), 1 ≤ i ≤ k − 1, and h is a C1+

diffeomorphism along WL
(1,k−1). Then h(V L

k ) = V f
k and h is a C1+ diffeomorphism

along WL
(1,k).

The proof of this proposition is given in Section 2.3 (and also uses an inductive

argument). In the proof we only need to establish that h(V L
k ) = V f

k . Then Propo-
sition 2.3 implies the smoothness of h along V L

k , and the smoothness along WL
(1,k)

follows from the Journé Lemma 2.2.



LOCAL RIGIDITY FOR ANOSOV AUTOMORPHISMS 6

2.2. Proof of Proposition 2.3. In this subsection we write

VL def
= V L

i , Vf def
= V f

i , EL def
= EL

i = TVL, Ef def
= Ef

i = TVf .

The proof is an adaptation of arguments of de la Llave [dlL02]. First we show
that h is Lipschitz along VL as a limit of smooth maps with uniformly bounded
derivatives. Then we prove that the measurable derivative of h along VL is actually
Hölder continuous. Both steps use Livšic theorem for commutative and noncommu-
tative cocycles and rely on conformality of L and f along VL and Vf respectively.
Conformality of f along Vf is crucial and to establish it we use a result from [KS10].

First we construct a map h0 close to h and satisfying the following conditions:

(1) h0(VL) = Vf , moreover, h0(VL(x)) = Vf (h(x));
(2) supx∈Td dVf (h0(x), h(x)) < +∞, where dVf is the distance along the leaves;
(3) h0 is C1+ diffeomorphism along the leaves of VL.

Let V̄L be the linear integral foliation of Es,L ⊕EL
1 ⊕ . . .⊕EL

i−1 ⊕EL
i+1 ⊕ . . .⊕EL

l .
We define the map h0 by intersecting local leaves:

h0(x) = Vf,loc(h(x)) ∩ V̄L,loc(x).

The map is well-defined and satisfies (2) since h is close to the identity. Condition
(1) holds since h(VL(x)) = Vf (h(x)) by the assumption, and (3) is satisfied since
for any x the leaf Vf (h(x)) is C1+ and C1 close to VL(x).

It follows easily as in [dlL02, Theorem 2.1] that

h = lim
n→∞

hn, where hn = f−n ◦ h0 ◦ Ln.

Indeed, let us endow the space of maps satisfying (1) and (2) with the metric
d(k1, k2) = supx dVf (k1(x), k2(x)). Then, since f−1 contracts the leaves of Vf , it
follows that the map k 7→ f−1 ◦ k ◦ L is a contraction with the fixed point h.

Now we prove that h is Lipschitz along Vf . For this it suffices to show that the
derivatives of the maps hn along VL are uniformly bounded. We estimate

‖DVL(x)hn‖ ≤ ‖Df−n|Ef (h0(Lnx))‖ · ‖DVL(Lnx)h0‖ · ‖Ln|EL(x)‖
= ‖ (

Dfn|Ef (f−n(h0(Lnx)))

)−1 ‖ · ‖DVL(Lnx)h0‖ · ‖Ln|EL‖
≤ ‖ (

Dfn|Ef (hn(x))

)−1 ‖ · ‖Ln|EL‖ · sup
z
‖DVL(z)h0‖.

Since DVLh0 is continuous on Td the supremum on the right is finite. We will now
show that the product ‖(Dfn|Ef (y))

−1‖ · ‖Ln|EL‖ is uniformly bounded in y and n.

We concentrate on the case when Vf is two-dimensional. The one-dimensional
case is similar except for conformality of L along VL and of f along Vf is trivial.
Since L is irreducible it is diagonalizable over C. Therefore, as the eigenvalues of
L|EL have the same modulus, L|EL is conformal with respect to some norm on EL.
We can assume that our background norm ‖ · ‖ is chosen so that L|EL is conformal.
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By the assumption of the theorem, Dpf
n is conjugate to Ln whenever fnp = p. It

follows that Dpf
n|Ef (p) is also diagonalizable over C and has eigenvalues of the same

modulus. To obtain conformality of Df |Ef , we apply the following result to vector
bundle E = Ef and cocycle F = Df |Ef .

[KS10, Theorem 1.3] Let E be a Hölder continuous linear bundle with two-dimensional
fibers over a compact Riemannian manifold M. Let F : E → E be a Hölder continu-
ous linear cocycle over a transitive Anosov diffeomorphism f : M→M. If for each
periodic point p ∈ M, the return map F n

p : Ep → Ep is diagonalizable over C and
its eigenvalues are equal in modulus, then F is conformal with respect to a Hölder
continuous Riemannian metric on E.

We denote by ‖·‖f
x the norm induced by the metric on Ef (x) given by the theorem.

The conformality of Df |Ef with respect to this norm means that

‖Df(v)‖f
f(x) = c(x) · ‖v‖f

x for any x ∈ Td and v ∈ Ef (x).

Clearly, c(x) = ‖Df |Ef (x)‖f , the norm of Df : (Ef (x), ‖ · ‖f
x) → (Ef (f(x)), ‖ · ‖f

f(x)).
We set

a(x) = ‖L|EL(x)‖ = ‖L|EL‖ and b(x) = c(h(x)) = ‖Df |Ef (h(x))‖f .

The function a(x) is constant in our context, however we will keep the variable for
consistency with b(x). Since L is conformal on EL, a(x) satisfies

an(x)
def
= a(x)a(Lx) · · · a(Ln−1x) = ‖Ln|EL‖.

The function b(x) is Hölder continuous, and using the relation fm ◦ h = h ◦Lm and
the conformality of Df |Ef we obtain

bn(x)
def
= b(x)b(Lx) · · · b(Ln−1x) =

= ‖Df |Ef (h(x))‖f · ‖Df |Ef (h(Lx))‖f · · · ‖Df |Ef (h(Ln−1x))‖f = ‖Dfn|Ef (h(x))‖f .

We claim that the functions a and b are cohomologous, i.e. the exists a continuous
function φ : Td → R+ such that

a(x)/b(x) = φ(Lx)/φ(x).

This follows from the Livšic Theorem [Liv71], [KH95, Theorem 19.2.1] once we
show that an(p) = bn(p) for any periodic point p = Lnp. We note that bn(p) =
‖Dfn|Ef (h(p))‖f is the modulus of the eigenvalues of Dfn|Ef (h(p)) since this linear

map is conformal with respect to norm ‖ · ‖f
h(p). A similar statement holds for an(p)

and Ln|EL . The coincidence of the periodic data for f and L implies that indeed
an(p) = bn(p) and hence the functions a and b are cohomologous. Using conformality
we obtain that

‖Ln|EL‖ · ‖(Dfn|Ef (h(x)))
−1‖f = ‖Ln|EL‖ · (‖Dfn|Ef (h(x))‖f

)−1
=

= an(x)/bn(x) = φ(Lnx)/φ(x)
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is uniformly bounded since φ is continuous on Td. Since the norm ‖ ·‖f is equivalent
to ‖·‖ we obtain that ‖(Dfn|Ef (y))

−1‖·‖Ln|EL‖ is uniformly bounded in y and n. We
conclude that ‖DVL(x)hn‖ is uniformly bounded in x and n and hence h is Lipschitz

along Vf .
A similar argument shows that ‖(DVL(x)hn)−1‖ is uniformly bounded and hence

h is bi-Lipschitz along Vf . In particular, DVLh exists and is invertible almost ev-
erywhere.

Differentiating f ◦h = h◦L along VL on a set of full Lebesgue measure we obtain

Df |Ef (h(x)) ◦DVL(x)h = DVL(Lx)h ◦ L|EL(x),

i.e., the cocycles Df |Ef (h(x)) and L|EL(x) are cohomologous with transfer function

DVL(x)h. The bundle Ef is trivial since it is close to the trivial bundle EL. Therefore,
Df |Ef (h(x)) and L|EL(x) can be viewed as Hölder continuous GL(2,R)-valued cocycles
over the automorphism L. Moreover, the existence of conformal metrics implies
that they are cohomologous to cocycles with values in the conformal subgroup. We
remark that in general measurable transfer functions are not necessarily continuous
[PW01, Section 9]. However, for conformal cocycles the measurable transfer function
coincides almost everywhere with a Hölder continuous one. This follows from [Sch99,
Theorem 6.1] or from [PP97, Theorem 1] after reducing cocycles to orthogonal ones
by factoring out the norms. See also [S10] for stronger results on GL(2,R)-valued
cocycles. We conclude that DVL(x)h is Hölder continuous, and hence h is a C1+

diffeomorphism along VL. ¤

2.3. Proof of Proposition 2.4. The proof is based on the following proposition.

Proposition 2.5. Assume that h(WL
(i,k)) = W f

(i,k), h(V L
i ) = V f

i and h is a C1+

diffeomorphism along V L
i . Then h(WL

(i+1,k)) = WL
(i+1,k).

We apply Proposition 2.5 inductively with i = 1, . . . , k − 1. At every step the
assumption of the proposition is fulfilled due to the assumptions in the Proposi-
tion 2.4 and the conclusion of Proposition 2.5 at the previous step. We obtain the
conclusion of Proposition 2.4 at the final step when WL

(i+1,k) = WL
(k,k) = V L

k .

It remains to prove Proposition 2.5. We will use the following simplified notation:

(WL,VL,UL) = (WL
(i,k), V

L
i ,WL

(i+1,k)),

(Wf ,Vf ,Uf ) = (W f
(i,k), V

f
i ,W f

(i+1,k)).

We note that VL and UL are respectively slow and fast sub-foliations in WL.
Similarly, Vf and Uf are slow and fast sub-foliations in Wf . We also note that
Uf = Wf ∩ W f

(i+1,l). The foliation W f
(i+1,l) is a fast part of the unstable foliation

and hence is C∞ inside the unstable leaves, see for example [KS07, Proposition



LOCAL RIGIDITY FOR ANOSOV AUTOMORPHISMS 9

3.9]. Therefore, the foliation Uf is C1+ inside the leaves of Wf and the holonomies
between the leaves of Vf along Uf are uniformly C1+.

Let F = h−1(Uf ). Then F is a continuous foliation with continuous leaves that
subfoliates WL. We need to show that F = UL. Since VL = h−1(Vf ), F is topologi-
cally transverse to VL, that is, any two leaves of F and VL in a leaf of WL intersect
exactly at one point. First we prove an auxiliary statement that gives some insight
into relative structure of F and VL.

For any point a ∈ Td and any b ∈ F(a) we denote by Ha,b : VL(a) → VL(b) the
holonomy along the foliation F , i.e., for every x ∈ VL(a) we define Ha,b(x) to be the
unique point of intersection F(x) ∩ VL(b).

Lemma 2.6. For any point a ∈ Td and any b ∈ F(a) the holonomy map Ha,b is a
restriction to VL(a) of a parallel translation inside WL.

Proof. For any point c ∈ Td and any d ∈ Uf (c) we denote by H̃c,d : Vf (c) → Vf (d)
the holonomy along the foliation Uf , which is C1+ as we noted above. Since F =
h−1(Uf ) and h(VL) = Vf we have

Ha,b = h−1 ◦ H̃h(a),h(b) ◦ h.

Since h is a C1+ diffeomorphism along VL we conclude that Ha,b is C1+.

UL(a) Uf (h(a))

VL(a)

VL(b)

Vf (h(a))

Vf (h(b))

h

h
−1

L
−n

F(a)

a

b

x

Ha,b(x)

h(a)

h(b)

h(x)

H̃h(a),h(b)(x)

Figure 1

To show that Ha,b is the restriction of a parallel translation, we prove that the
differential DHa,b = Id. We apply L−n and denote an = L−n(a), bn = L−n(b). Since
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F = h−1(Uf ) and f preserves the foliation Uf , L preserves F and we can write

Ha,b = Ln ◦Han, bn ◦ L−n.

Differentiating and denoting DanHan,bn = Id + ∆n we obtain

DaHa,b = Ln|VL ◦DanHan,bn ◦ L−n|VL = Id + Ln|VL ◦∆n ◦ L−n|VL .

Since L is conformal on VL with respect to some inner product,

‖Ln|VL‖ · ‖L−n|VL‖ ≤ C and ‖Ln|VL ◦∆n ◦ L−n|VL‖ ≤ C‖∆n‖ for all n.

It remains to show that ‖∆n‖ → 0. This follows easily by differentiating the equation

Han,bn = h−1 ◦ H̃h(an), h(bn) ◦ h.

Indeed, we obtain

DanHan,bn = (Dbnh)−1 ◦Dh(an)H̃h(an), h(bn) ◦Danh,

where Dh(an) → Dh(bn) and Dh(an)H̃h(an), h(bn) → Id since dist(an, bn) → 0 as n →∞.
Hence ∆n = DanHan,bn − Id → 0 as n →∞. ¤

Now let a be a fixed point of L and let B be the unit ball in UL(a) centered at
a. If B ⊂ F(a), then UL(a) = F(a) by invariance under L. Since L is irreducible
and UL is invariant, the leaf UL(a) is dense in Td. It follows that the set of points
x such that UL(x) = F(x) is dense in Td and hence UL = F . Therefore, it suffices
to show that B ⊂ F(a).

We argue by contradiction. Assume that there is z1 ∈ B such that z1 /∈ F(a).
Let

x1 = VL(z1) ∩ F(a).

Since VL has dense leaves we can choose a sequence {bn, n ≥ 1} ⊂ VL(a) so that
bn → x1 as n →∞. Let

yn = Ha,x1(bn),

where Ha,x1 is the holonomy map along F from VL(a) to VL(x1). Continuity of F
implies that the sequence yn converges to a point x2 ∈ F(a). Moreover, Lemma 2.6
implies that {x1, x2} is a parallel translation of {a, x1}.

We continue this procedure inductively to build the sequence {xn; n ≥ 1} ⊂ F(a).
Let

zn = VL(xn) ∩ UL(a).

Then according to the construction

(2.1) dUL(zn, a) = ndUL(z1, a) and dVL(xn, zn) = ndVL(x1, z1).

For every n we take N(n) to be the smallest integer such that L−N(n)(zn) ∈ B.
Since L−1 contracts UL exponentially faster than VL, equation (2.1) implies that

dVL(L−N(n)(xn), L−N(n)(zn)) →∞ as n →∞.
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Figure 2

This contradicts an obvious bound due to compactness of B:

max
z∈B

dVL(z,VL(z) ∩ F(a)) < ∞.

Thus we conclude that F = UL. ¤

3. Genericity

In this section we show that toral automorphisms satisfying the assumptions of
Theorem 1.1 are generic in SL(d,Z). We would like to thank A. Gorodnik, P. Sarnak,
and D. Speyer for helpful discussions on this topic.

We consider SL(d,R), d ≥ 2, as a subset of the Euclidean space of d× d matrices
equipped with the norm ‖A‖ = Tr(AtA). We denote

BR(T ) = {A ∈ SL(d,R) : ‖A‖ ≤ T} and BZ(T ) = {A ∈ SL(d,Z) : ‖A‖ ≤ T}.
It is known [DRS93, Theorem 3.1] that number of matrices in BZ(T ) grows as the
Haar volume of BR(T ). More precisely

#BZ(T ) ∼ vol(BR(T )) ∼ c T d2−d.

Let E(T ) the subset of BZ(T ) that consists of matrices that do not satisfy the
assumptions of Theorem 1.1, i.e. are either reducible (over Q), or non-Anosov, or
have at least three eigenvalues of the same modulus.
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Proposition 3.1. There exists δ > 0 such that #E(T ) ¿ T d2−d−δ.

To prove the above proposition we first show the following.

Lemma 3.2. The set E = ∪T>0E(T ) lies in a finite union of algebraic hypersurfaces
in SL(d,R).

Proof. We consider A ∈ SL(d,R) and denote its eigenvalues by r1, r2, ..., rd. We will
describe explicit relations on the entries of matrices in E as symmetric polynomials
in r1, r2, ..., rd. Since the eigenvalues are the roots of the characteristic polynomial
χA, such a polynomial can be expressed as a polynomial in the coefficients of χA,
and hence as one in the entries of A.

Suppose that χA has three roots of the same modulus, in particular, d ≥ 3. Then
χA must have either two pairs of complex conjugate eigenvalues of the same modulus
or a pair of complex conjugate eigenvalues of the same modulus as a real eigenvalue.
In the first case, the eigenvalues satisfy

P =
∏

i,j,k,l

(rirj − rkrl) = 0, where 1 ≤ i, j, k, l ≤ d are distinct,

and in the second case they satisfy

P =
∏

i,j,k

(rirj − r2
k) = 0, where 1 ≤ i, j, k ≤ d are distinct.

From now on we assume that A ∈ SL(d,Z). Suppose that A is not Anosov, i.e. it
has an eigenvalue of modulus 1. If A has a complex pair ri, rj on the unit circle, then
rirj = 1 and the same holds for the product of all other eigenvalues since det A = 1.
Thus we obtain a symmetric polynomial relation

P =
∏

i6=j

(rirj −
∏

k 6=i,j

rk) = 0.

Similarly, if ri = 1 or ri = −1 for some i, we have

P =
∏

i

(ri −
∏

k 6=i

rk) = 0.

These relations are non-trivial if d ≥ 3. For d = 2, A is not Anosov if and only if
|TrA| ≤ 2. Such matrices lie in affine hyperplanes TrA = k, k = 0,±1,±2.

Finally, suppose that A is reducible, i.e. its characteristic polynomial χA is re-
ducible over Q. Since A is in SL(d,Z), χA is reducible over Z and the factors have
constant terms equal to 1 or −1. It easy to see that having such a factor of a given
degree imposes a nontrivial constrain on the coefficients of χA. Alternatively, one
can give relations on the roots as before. For example, if χA has a factor of degree
k with constant term 1, then some product of k eigenvalues is 1 and hence the
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eigenvalues satisfy the relation

P =
∏

i1,...,ik

(ri1 · · · rik − 1) = 0, where 1 ≤ i1, ..., ik ≤ d are distinct.

¤

Now we deduce Proposition 3.1 from the following result by A. Nevo and P. Sar-
nak, which is a particular case of Lemma 4.2 in [NS08] .

Lemma 3.3. Let G be a subgroup of GL(m,R) isomorphic to SL(d,R). Let v ∈ Zm

and V = Gv be the orbit of v. Assume that there is a polynomial P ∈ Q[x1, . . . xm]
that does not vanish identically on V . Then there exists δ = δ(P ) > 0 such that

#{A ∈ G ∩GL(m,Z) : ‖A‖ ≤ T, P (Av) = 0} ¿ T d2−d−δ.

We apply this proposition with m = d2 and identify Rm with Matd×d(R) as follows,
first d coordinates are identified with the first column, next d coordinates with the
second column, etc. We embed SL(d,R) into GL(m,R) diagonally g 7→ g×g×. . .×g
(d times). It is easy to see that under this identification, the action of SL(d,R) on
Rm is the matrix multiplication on the left.

We take v ∈ Zm = Matd×d(Z) to be the identity matrix. Then V is identified
with SL(d,R) and multiple application of Lemma 3.3 to the polynomials given in
Lemma 3.2 yields Proposition 3.1. We note that the norm in Lemma 3.3 comes from
GL(m,R) and is different from the norm we have defined on SL(d,R). However this
does not make a difference for the asymptotics since the norms are equivalent.

Appendix A. Some examples

by Rafael de la Llave

We consider matrix cocycles over an Anosov diffeomorphism g of a manifold M.
Such a cocycle is given by a function A : M→ GL(d,R). Our goal is to construct
examples of (a) cocycles which are conformal at periodic points but are not uniformly
quasi-conformal and (b) Anosov diffeomorphisms such that the restriction of the
derivative to an invariant distribution gives a cocycle as in (a).

For a matrix A ∈ GL(d,R) we denote by K(A) = ‖A‖ ·‖A−1‖ its quasi-conformal
distortion with respect to a norm ‖.‖ on Rd. A is called conformal with respect to
a given norm if K(A) = 1. For example, if A is diagonalizable over C and all its
eigenvalues are of the same modulus, then A is conformal with respect to a norm
given by a diagonalization of A. We say that a cocycle A : M → GL(d,R) is
uniformly quasi-conformal if K(An(x)) is uniformly bounded in x and n, where

An(x) = A(gn−1x) · · ·A(gx)A(x).

Unlike conformality, uniform quasi-conformality does not depend on the choice of a
norm.
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Examples of (a) were already constructed in [KS10] but did not give rise to ex-
amples of (b). We also note that our examples are contained in infinite dimensional
families which include linear automorphisms of the tori, so that they show that
parametric rigidity is also impossible.

Example A.1. Let g be an Anosov diffeomorphism of a manifold M. There exists
a family of SL(3,R)-valued cocycles Aε, |ε| < 1, over g such that:

• A0 is a constant conformal matrix;
• Aε(x) is jointly analytic in ε and x;
• For any ε and any periodic point p = gnp, An

ε (p) is conformal in some norm;
• For any ε 6= 0, the cocycle Aε is not uniformly quasi-conformal.

Note that in Example A.1 we can take g to be any Anosov diffeomorphism and
we do not even require transitivity.

Remark A.2. One can construct similar examples taking values in SL(d,R) for
d ≥ 3. It was shown in [KS10, Theorem 1.3] that there are no such examples when
d = 2, and the result is trivial when d = 1.

The second example shows that this phenomenon is also possible in derivative
cocycles.

Example A.3. There exists d ( e.g., d = 9) and an analytic family of analytic maps
fε : Td → Td such that:

• f0 is an Anosov linear automorphism of Td;
• For any ε, Dfε preserves a three dimensional bundle E;
• For any ε and any periodic point p = fnp, Dfn

ε |E(p) is conformal in some
norm;

• For any ε 6= 0, Dfε|E is not uniformly quasi-conformal.

A.1. Construction of Example A.1. We pass to a finite power f ≡ gN of g for
which there exist two fixed points x1, x2 and two balls B1, B2 around them such that
for every sequence σ ∈ {1, 2}N there exists a point x∗ such that

(A.1) f j(x∗) ∈ Bσj
.

This can be easily arranged using Markov partitions. Of course, the point x∗ is far
from being unique, as any point on its local stable manifold would have the same
itinerary.

We construct the family of cocycles with required properties over f to illustrate
the idea and then indicate how to carry out similar construction over g. We take

Aε(x) =

(
Rβ εϕ(x)
0 1

)
, where Rβ =

(
cos 2πβ sin 2πβ

− sin 2πβ cos 2πβ

)
,
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β an irrational number, and ϕ : M → R2 an analytic function satisfying some
properties to be specified later. We observe that

An
ε (x) =

(
Rnβ εϕ̃n(x)
0 1

)
, where

ϕ̃n(x) =
n∑

j=1

R(n−j)β ϕ(f j(x)) = Rnβ

n∑
j=1

R−jβ ϕ(f j(x)).

Clearly, the eigenvalues of An
ε (x) are e2πinβ, e−2πinβ, 1. Since β is irrational, all of

them are different, and An(x) is diagonalizable. Therefore An
ε (p) is conformal in

some norm whenever fn(p) = p. We construct a function ϕ and a point x∗ such
that ∥∥∥

n∑
j=1

R−jβ ϕ(f j(x∗))
∥∥∥ →∞ as n →∞,

which implies that Aε is not uniformly quasiconformal for every ε 6= 0.

Since the C∞ case is easier we will discuss it first. We choose an increasing
sequence of integers J ≡ {jk}∞k=1 such that

{jkβ mod 1} → 0 and hence ‖R−jkβ − Id‖ → 0 as k →∞.

We take a sequence σ such that

(A.2) σ` =

{
1 if ` ∈ {jk}k∈N

2 if ` /∈ {jk}k∈N

and consider x∗ that satisfies (A.1) for the sequence (A.2). Now, we choose ϕ so
that

ϕ(x) =

(
1

0

)
if x ∈ B1 and ϕ(x) =

(
0

0

)
if x ∈ B2.

Then we have
∥∥∥

n∑
j=1

R−jβϕ(f jx∗)
∥∥∥ =

∥∥∥
( ∑

jk≤n

R−jkβ

)(
1

0

)∥∥∥ →∞ as n →∞.

The analytic case is slightly more complicated since we cannot use functions with
compact support. We define a sequence J in a different way

j ∈ J if and only if ]
(
R−jβ

(
1

0

)
,

(
1

0

))
< π/3.

Consider a corresponding point x∗ and an analytic function ϕ satisfying

∣∣∣∣ϕ(x)−
(

1

0

)∣∣∣∣ ≤ 10−8 if x ∈ B1 and

∣∣∣∣ϕ(x)−
(

0

0

)∣∣∣∣ ≤ 10−8 if x ∈ B2.
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Such functions can easily be obtained by modifying the corresponding C∞ examples.
Since our new sequence has asymptotic density 1/3 in Z+ a straightforward estimate
implies divergence of corresponding sum.

The point of Example A.1 is that the matrices that diagonalize An
ε (p) are not

bounded uniformly in p, so while An
ε (p) is conformal in some norm, K(An

ε (p)) are
not uniformly bounded with respect to the standard norm.

Similar constructions can be carried out for the initial diffeomorphism g. Instead
of balls B1 and B2 one needs to work with neigborhoods of {x1, g(x1), . . . g

N−1(x1)}
and {x2, g(x2), . . . gN−1(x2)} and redefine ϕ accordingly.

A.2. Construction of Example A.3. Let B and C be hyperbolic integer matrices
with determinant 1 such that r > 1 is an eigenvalue of C, Cv = rv, and re±2πiβ are
eigenvalues of B for some irrational β. Then

f0(x, y) = (Bx,Cy),

is an Anosov toral automorphism. As in Example A.1 we pass to a finite power if
necessary, this only changes the value of r. To embed Example A.1 into a diffeo-
morphism we consider a perturbation of the form

fε(x, y) = (Bx + εψ(y), Cy),

where ψ takes values in the two dimensional subspace U corresponding to the eigen-
values re±2πiβ. Note that the three dimensional space W = U ⊕ Rv is invariant
under fε. The restriction of the differential Dfε to W is of the form rAε, where

Aε(y) =

(
Rβ

ε
r

∂ψ
∂v

(y)
0 1

)
.

We consider this restriction as a cocycle over Anosov automorphism g(y) = Cy.
Thus Example A.3 is reduced to Example A.1 provided we can solve the cohomo-
logical equation

1

r

∂ψ

∂v
= ϕ,

where ϕ as in Example A.1. If the vector v is Diophantine then by a theorem of
Kolmogorov this cohomological equation has a solution ψ if and only if

∫
ϕ = 0 (see

e.g., [R75]). The vector v is algebraic and hence Diophantine as an eigenvector of
integral matrix. Additional condition

∫
ϕ = 0 can be accommodated since we have

a lot of freedom outside the balls B1 and B2.
The existence of the matrices A and B satisfying the required properties can be

easily seen if one finds an integer coefficients monic polynomials with corresponding
properties. We communicated the above question to Professor F. Voloch who kindly
formulated it and posted it at http://mathoverflow.org. In less than a day we
obtained several responses [V] from Buzzard and other participants. For example,
one can take polynomials

x3 + 3x2 + 2x− 1 and x6 − 2x4 − 3x2 − 1,
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as characteristic polynomials of B and C, which gives a 9 dimensional example.
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