
MULTIFRACTAL ANALYSIS OF CONFORMAL AXIOM A FLOWS

YA. B. PESIN, V. SADOVSKAYA

Abstract. We develop the multifractal analysis of conformal axiom A flows.
This includes the study of the Hausdorff dimension of basic sets of the flow, the
description of the dimension spectra for pointwise dimension and for Lyapunov
exponents and the multifractal decomposition associated with these spectra. The
main tool of study is the thermodynamic formalism for hyperbolic flows by Bowen
and Ruelle. Examples include suspensions over axiom A conformal diffeomor-
phisms, Anosov flows, and in particular, geodesic flows on compact smooth sur-
faces of negative curvature.

1. Introduction

The multifractal analysis of dynamical systems has recently become a popular
topic in the dimension theory of dynamical systems. By now only conformal dynam-
ical systems with discrete time have been subjects of study. They include conformal
expanding maps and conformal axiom A diffeomorphisms (see [10] for the definition
of conformal axiom A diffeomorphisms, related results, and further references).

In this paper we extend the study to include conformal dynamical systems with
continuous time, more precisely, conformal axiom A flows. Our first result is the
formula for the Hausdorff dimension of basic sets of axiom A flows (see Section 4).
It is an extension to the continuous time case of the famous Bowen pressure formula
for the Hausdorff dimension of hyperbolic sets.

We then consider the two dimension spectra: the dimension spectrum for point-
wise dimensions generated by Gibbs measures and the dimension spectrum for Lya-
punov exponents. Using the symbolic representation of axiom A flows by suspensions
over subshifts of finite type and the associated thermodynamic formalism of Bowen
and Ruelle ([4]), we obtain a complete description of these spectra. The statements
of our results are similar in spirit to those in the discrete time case but proofs require
some substantial technical modifications.

We stress that we handle only axiom A flows which are conformal and we introduce
and study this notion in Section 3. Examples include suspensions over conformal
axiom A diffeomorphisms and two-dimensional Anosov flows. Our results provide,
in particular, a formula for the dimension and a description of the dimension spectra
for pointwise dimensions and for Lyapunov exponents for the time-one map of the
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flow. This is the first example of a partially hyperbolic diffeomorphism for which
such results are now known.

Let us emphasize that, in general, both dimension spectra are non-trivial. More
precisely, as we show in Section 5, the dimension spectrum for pointwise dimension
is trivial (i.e., is a δ-function) if and only if the Gibbs measure is the measure of full
dimension. For an Anosov flow it holds if it preserves a smooth measure.

Furthermore, the dimension spectrum for Lyapunov exponents is trivial if and
only if the measure of full dimension coincides with the measure of maximal entropy.
We apply this statement to geodesic flows on compact n-dimensional Riemannian
manifolds of negative curvature. For n = 2 we have that the spectrum is trivial if
and only if the topological entropy of the flow coincide with the metric entropy (see
Section 3). This provides a new insight into the famous Katok’s entropy conjecture
(see [8]). For n > 2, the requirement that the flow is conformal implies that the cur-
vature is constant. In particular, the dimension spectrum for Lyapunov exponents
is trivial.

Finally we describe multifractal decomposition associated with the two spectra.
More detailed description can be found in [2].

2. Preliminaries

Let M be a smooth finite-dimensional Riemannian manifold. Throughout this
paper f t : M → M is a flow on M without fixed points generated by a Cr-vector

field V, r ≥ 1, i.e., df
t(x)
dt

= V (x) for every x ∈ M. A compact f t-invariant set Λ ⊂ M

is said to be hyperbolic if there exist a continuous splitting of the tangent bundle
TΛM = E(s) ⊕ E(u) ⊕X and constants C > 0 and 0 < λ such that for every x ∈ Λ
and t ∈ R,

1. df t
(
E(s)(x)

)
= E(s)(f t(x)), df t

(
E(u)(x)

)
= E(u)(f t(x)), and

X = {αV : α ∈ R} is a one-dimensional subbundle;

2. for all t ≥ 0,
‖df tv‖ ≤ Ce−λt‖v‖ if v ∈ E(s)(x),

‖df−tv‖ ≤ Ce−λt‖v‖ if v ∈ E(u)(x).

The subspaces E(s)(x) and E(u)(x) are called stable and unstable subspaces at x
respectively and they depend Hölder continuously on x. It is well-known (see, for
example, [8]) that for every x ∈ Λ one can construct stable and unstable local

manifolds, W
(s)
loc (x) and W

(u)
loc (x). They have the following properties:

3. x ∈ W (s)
loc (x), x ∈ W (u)

loc (x);

4. TxW
(s)
loc (x) = E(s)(x), TxW

(u)
loc (x) = E(u)(x);

5. f t(W
(s)
loc (x)) ⊂ W

(s)
loc (f t(x)), f−t(W

(u)
loc (x)) ⊂ W

(u)
loc (f−t(x));

6. there exist K > 0 and 0 < µ such that for every t ≥ 0,

ρ(f t(y), f t(x)) ≤ Ke−µtρ(y, x) for all y ∈ W (s)
loc (x)
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and
ρ(f−t(y), f−t(x)) ≤ Ke−µtρ(y, x) for all y ∈ W (u)

loc (x),

where ρ is the distance in M induced by the Riemannian metric;

A hyperbolic set Λ is called locally maximal if there exists a neighborhood U
of Λ such that

Λ =
⋂

−∞<t<∞

f t(U).

For a locally maximal hyperbolic set Λ the following property holds:

7. for every ε > 0 there exists δ > 0 such that for any two points x, y ∈ Λ with
ρ(x, y) ≤ δ one can find a number t = t(x, y), |t| ≤ ε, for which the intersection

W
(s)
loc (f t(x)) ∩ W

(u)
loc (y)

consists of a single point z ∈ Λ. We denote this point by z = [x, y]; moreover, the
maps t(x, y) and [x, y] are continuous.

We define stable and unstable global manifolds at x ∈ Λ by

W (s)(x) =
⋃
t≥0

f−t
(
W

(s)
loc (f t(x))

)
, W (u)(x) =

⋃
t≥0

f t
(
W

(u)
loc (f−t(x))

)
.

They can be characterized as follows:

W (s)(x) = { y ∈ Λ : ρ(f t(y), f t(x)) → 0 as t→∞},
W (u)(x) = { y ∈ Λ : ρ(f−t(y), f−t(x)) → 0 as t→∞}.

A flow f t is called an axiom A flow if its set of non-wandering points is hyperbolic.
Let us remark that we deal only with flows without fixed points. If this assumption
is dropped one should assume in the above definition that the flow has finitely many
hyperbolic fixed points.

The Smale Spectral Decomposition Theorem claims (see [8]) that in this case
the hyperbolic set can be decomposed into finitely many disjoint closed f t-invariant
locally maximal hyperbolic sets on each of which f t is topologically transitive. These
sets are called basic sets.

From now on we will assume that f t is topologically transitive on a locally maximal
hyperbolic set Λ. One can show that periodic orbits are dense in Λ.

In [3], Bowen constructed Markov partitions of basic sets (see also [13] for the
case of Anosov flows). We provide here a concise description of his results. Given
a point x ∈ Λ, consider a small compact disk D containing x of co-dimension one
which is transversal to the flow f t. This disk is a local section of the flow, i.e., there
exists τ > 0 such that the map (y, t) → f t(y) is a diffeomorphism of the direct
product D × [−τ, τ ] onto a neighborhood Uτ (D). The projection PD : Uτ (D) → D
is a differentiable map.

Consider now a closed set Π ⊂ Λ ∩ D which does not intersect the boundary
∂D. For any two points y, z ∈ Π let {y, z} = PD[y, z]. The set Π is said to be a
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rectangle if Π = intΠ (where the interior of Π is considered with respect to the
induced topology of Λ∩D) and {y, z} ∈ Π for any y, z ∈ Π. If Π is a rectangle then
for every x ∈ Π we set

W
(s)
loc (x,Π) = { {x, y} : y ∈ Π } = Π ∩ PD

(
Uτ (D) ∩W (s)

loc (x)
)
,

W
(u)
loc (x,Π) = { {z, x} : z ∈ Π } = Π ∩ PD

(
Uτ (D) ∩W (u)

loc (x)
) (2.1)

(we assume that diam Π is much smaller than the size of local stable and unstable
manifolds).

A collection of rectangles T = {Π1, . . . ,Πn} is called regular of size r0 if there
exist small compact co-dimension one disks D1, . . . , Dn, which are transversal to the
flow f t, such that

(1) diamDi < r0 and Πi ⊂ intDi;
(2) for i 6= j at least one of the sets Di ∩ f [0,r0]Dj or Dj ∩ f [0,r0]Di is empty; in

particular, Di ∩Dj = ∅;
(3) Λ = f [−r0,0]Γ(T) where Γ(T) = Π1 ∪ · · · ∪ Πn.

Let T = {Π1, . . . ,Πn} be a regular collection of rectangles of size r0. For every
x ∈ Γ(T) one can find the smallest positive number t(x) ≤ r0 such that f t(x)(x) ∈
Γ(T). Since the disks Di are disjoint there exists a number β > 0 such that t(x) ≥ β
for all x. The map HT : Γ(T) → Γ(T) given by

HT(x) = f t(x)(x) (2.2)

is one-to-one. Note that the maps t(x) and HT are not continuous on Γ(T) but on

Γ′(T) =

{
x ∈ Γ(T) : (HT)k(x) ∈

n⋃
i=1

int Πi for all k ∈ Z

}
. (2.3)

The set Γ′(T) is dense in Γ(T) and the set ∪t∈Rf
t(Γ′(T)) is dense in Λ.

Given two rectangles Πi and Πj we denote by

U(Πi,Πj) = {w ∈ Γ′(T) : w ∈ Πi, HT(w) ∈ Πj},

V (Πi,Πj) = {w ∈ Γ′(T) : w ∈ Πj, H
−1
T (w) ∈ Πi}.

(2.4)

A Markov collection of size r0 (for a basic set Λ) is a regular collection T =
{Π1, . . . ,Πn} of rectangles of size r0 which satisfies the following conditions: for any
1 ≤ i, j ≤ n,

(1) if x ∈ U(Πi,Πj) then W
(s)
loc (x,Π) ⊂ U(Πi,Πj);

(2) if y ∈ V (Πi,Πj) then W
(u)
loc (y,Π) ⊂ V (Πi,Πj)

(see (2.1)). In [3], Bowen proved that for any sufficiently small r0 there exist a
Markov collection of size r0.
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Given a rectangle Πi ∈ T, we call the set

Ri =
⋃
x∈Πi

⋃
0≤t≤t(x)

f t(x) ⊂ Λ (2.5)

a Markov set (corresponding to the Markov collection T). Note that Ri = intRi

and intRi ∩ intRj = ∅ for any i 6= j.

Using Markov collections one can obtain symbolic representations of Axiom A
flows by symbolic suspension flows (see Appendix; see also [4]).

Proposition 2.1. Let Λ be a basic set for an axiom A flow f t generated by a C1-
vector field V . Then there exists a topologically mixing subshift of finite type (ΣA, σ)
(see Appendix), a positive Hölder continuous function ψ (in the metric dβ for some
β > 1, (see (A.22)), and a continuous projection map χ : Λ(A,ψ) → Λ such that
the following diagram

Λ(A,ψ)
St−−−→ Λ(A,ψ)

χ

y yχ
Λ

f t−−−→ Λ

is commutative with St a symbolic suspension flow (see (A.24)).

The map χ is called the coding map.
The transfer matrix A = (ai,j) is uniquely determined by a Markov collection for

Λ. Namely, if T = {Π1, . . . ,Πn} is such a collection then ai,j = 1 if and only if there
exists a point x ∈ Γ′(T) such that x ∈ Πi and HT(x) ∈ Πj (see (2.2) and (2.3)).

As an immediate consequence of Proposition 2.1 we obtain the following state-
ment.

Proposition 2.2. Let Λ be a basic set for an axiom A flow f t and ϕ : Λ → R
a Hölder continuous function. Then there exists a unique equilibrium measure νϕ
corresponding to ϕ (see (A.21)). Moreover, the measure νϕ is ergodic and positive
on open sets.

We describe the local structure of an equilibrium measure ν corresponding to a
Hölder continuous function (see part 3 of the Appendix).

Let R1, . . . , Rn be the Markov sets corresponding to a Markov collection T for Λ.
Let us fix a set Ri and consider the partitions ξ(u) and ξ(s) of Ri by local stable and
unstable manifolds. Denote by ν(u)(x) and ν(s)(x) the corresponding conditional

measures on W
(u)
loc (x) ∩ Ri and W

(s)
loc (x) ∩ Ri (where x ∈ Ri) generated by ν. The

following statement shows that equilibrium measures have local product structure.
Its proof follows from Proposition 8.5 (see Appendix) and local product structure
of Gibbs measures for subshifts of finite type (see [10]).
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Proposition 2.3. There are positive constants A1 and A2 such that for some point
x ∈ Ri and any Borel set E ⊂ Ri

A1

∫
Ri

χE(y, z, t) dν(u)(y) dν(s)(z) dt ≤ ν(E) ≤ A2

∫
Ri

χE(y, z, t) dν(u)(y) dν(s)(z) dt,

(2.6)

where y ∈ W (u)
loc (x) and z ∈ W (s)

loc (x).

3. Conformal Axiom A Flows

Let F = {f t} be a C2-flow on a locally maximal hyperbolic set Λ. We say that
F is u-conformal (respectively, s-conformal) if there exists a continuous function
A(u) (respectively, A(s)) on Λ× R such that for every x ∈ Λ and t ∈ R,

df t|E(u)(x) = A(u)(x, t) I(u)(x, t),

respectively,

df t|E(s)(x) = A(s)(x, t) I(s)(x, t),

where I(u)(x, t) : E(u)(x) → E(u)(f tx) and I(s)(x, t) : E(s)(x) → E(s)(f tx) are
isometries.

We define functions a(u)(x) and a(s)(x) by

a(u)(x) =
∂

∂t
logA(u)(x, t) |t=0 = lim

t→0

log ‖ df t|E(u)(x) ‖
t

,

a(s)(x) =
∂

∂t
logA(s)(x, t) |t=0 = lim

t→0

log ‖ df t|E(s)(x) ‖
t

.

Since the subspaces E(u)(x) and E(s)(x) depend Hölder continuously on x the func-
tions a(u)(x) and a(s)(x) are also Hölder continuous. Note that a(u)(x) > 0 and
a(s)(x) < 0 for every x ∈ Λ. For any x ∈ Λ and any t ∈ R, we have

‖ df t(v) ‖ = ‖v‖ exp

∫ t

0

a(u)(f τ (x)) dτ for any v ∈ E(u)(x), (3.1)

and

‖ df t(w) ‖ = ‖w‖ exp

∫ t

0

a(s)(f τ (x)) dτ for any w ∈ E(s)(x). (3.2)

A flow F = {f t} on Λ is called conformal if it is u-conformal and s-conformal as
well. It is easy to see that a three-dimensional flow on a locally maximal hyperbolic
set is conformal.

If F = {f t} is a conformal flow then for every x ∈ Λ the Lyapunov exponent at
x takes on two values which are given by

λ+(x) = lim
t→∞

log ‖df tx|E(u)(x)‖
t

= lim
t→∞

1

t

∫ t

0

a(u)(f τ (x)) dτ > 0, (3.3)



MULTIFRACTAL ANALYSIS OF CONFORMAL AXIOM A FLOWS 7

λ−(x) = lim
t→∞

log ‖df tx|E(s)(x)‖
t

= lim
t→∞

1

t

∫ t

0

a(s)(f τ (x)) dτ < 0 (3.4)

(provided the limit exists). If ν is an f -invariant measure then by the Birkhoff
ergodic theorem, the above limits exist ν-almost everywhere, and if ν is ergodic
then they are constant almost everywhere. We denote the corresponding values by
λ+
ν > 0 and λ−ν < 0.

We describe some examples of conformal axiom A flows.
1. A suspension flow over a conformal axiom A diffeomorphism is a conformal ax-

iom A flow. Note that if the height function of a suspension flow is not cohomologous
to a constant then the corresponding suspension flow is mixing.

2. Consider a conformal Anosov flow F . Let Λ be a closed locally maximal
hyperbolic set for F . Then the restriction of F |Λ is a conformal axiom A flow.

3. Consider the geodesic flow on a compact Riemannian manifold M of negative
curvature. The flow acts on the space SM = {(x, v) : x ∈ M, v ∈ TxM, ‖v‖ = 1} of
unit tangent vectors. We endow the second tangent bundle TTM with a Riemannian
metric whose projection to TM is the given metric. If dim M = 2 then the geodesic
flow is conformal since stable and unstable subspaces are one dimensional, and our
results apply.

If dim M ≥ 3 the result in [7] shows that conformality of the geodesic flow implies
that M is of constant curvature (regardless of the metric on the second tangent
bundle). We thank M. Kanai for imforming us on his result.

On the other hand, if the curvature of M is constant then the geodesic flow is
conformal provided the second tangent bundle is endowed with the canonical metric.

Remark 3.1. Our main results (Theorems 4.1, 4.2, 5.1, 5.2, and 5.3) can be easily
generalized to the case when the flow is not conformal, but has bounded distortion.
By this we mean that there exist Hölder continuous functions a(u) and a(s) on Λ,
and constants K1, K2 > 0 such that for any x ∈ Λ, v ∈ E(u)(x), w ∈ E(s)(x), and
t ∈ R,

K1 ‖v‖ exp

∫ t

0

a(u)(f τ (x)) dτ ≤ ‖ df t(v) ‖ ≤ K2 ‖v‖ exp

∫ t

0

a(u)(f τ (x)) dτ ,

and

K1 ‖w‖ exp

∫ t

0

a(s)(f τ (x)) dτ ≤ ‖ df t(w) ‖ ≤ K2 ‖w‖ exp

∫ t

0

a(s)(f τ (x)) dτ

(compare to (3.1) and (3.2) ). We thank A. Katok for providing us with this remark.
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4. Hausdorff and Box Dimension of Basic Sets for Conformal Axiom
A Flows

Let Λ be a basic set for a u-conformal axiom A flow F = {f t}. Consider the
function

−t(u)a(u)(x) (4.1)

on Λ, where t(u) is a unique root of Bowen’s equation

PΛ(F,−t a(u)) = 0 (4.2)

(see (A.16)-(A.18)). The function −t(u)a(u) is Hölder continuous and therefore, there
exists a unique equilibrium measure corresponding to it. We denote this measure
by κ(u).

Let T = {Π1, . . . ,Πn} be a Markov collection for Λ and R1, . . . , Rn the Markov sets
corresponding T. Given x ∈ Λ denote by R(x) a Markov set containing x. Consider

the conditional measures η(u)(y) on W
(u)
loc (y) ∩ R(x) (where y ∈ R(x)) generated by

the measure κ(u).
We now state the result which describes the Hausdorff dimension of subsets of

unstable manifolds.

Theorem 4.1. For any x ∈ Λ and any open set U ⊂ W
(u)
loc (x) such that U ∩ Λ 6= ∅

the following statements hold:

(1) dimH(U ∩ Λ) = dimB(U ∩ Λ) = dimB(U ∩ Λ) = t(u);
(2)

t(u) =
hκ(u)(f 1)∫

Λ
a(u)(y) dκ(u)(y)

, (4.3)

where hκ(u)(f 1) is the measure-theoretic entropy of the time-one map f 1 with
respect to the measure κ(u);

(3) dη(u)(x)(y) = t(u) for all y ∈ W (u)
loc (x) ∩R(x);

(4) t(u) = dimH η
(u)(x), i.e., the measure η(u)(x) is the measure of full dimension

(see Appendix);
(5) the t(u)-Hausdorff measure of U ∩ Λ is positive and finite; moreover, it is

equivalent to the measure η(u)(x)|U .

Remark 4.1 Consider a u-conformal diffeomorphism f on a locally maximal
hyperbolic set X. This means that there exists a continuous function b(u) on X such
that for any x ∈ X

df |E(u)(x) = b(u)(x) I(u)(x),

where I(u)(x) : E(u)(x) → E(u)(f(x)) is an isometry (see [10]). It is known that for

any x ∈ X and any open set U ⊂ W
(u)
loc (x) such that U ∩X 6= ∅,

dimH(U ∩X) = dimB(U ∩X) = dimB(U ∩X) = t(u),
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where t(u) is the unique root of Bowen’s equation

PX(f,−t log b(u)) = 0

(see [10]).
Consider a u-conformal flow F = {f t} and the corresponding time-one map f 1.

It is a partially hyperbolic diffeomorphism and the local strong unstable manifold

for f 1 at a point x ∈ Λ, W
(su)
loc (x), coincides with W

(u)
loc (x) for the flow F . Note that

df1|E(su)(x) = A(u)(x, 1) I(u)(x, 1).

In view of (A.19)

PΛ(F,−ta(u)) = PΛ

(
f 1,−t

∫ 1

0

a(u)(f τx) dτ

)
= PΛ

(
f 1,−t logA(u)(x, 1)

)
.

Therefore, the first statement of Theorem 4.1 and (4.2) imply that for any x ∈ Λ

and for any open set U ⊂ W
(su)
loc (x) such that U ∩ Λ 6= ∅

dimH(U ∩ Λ) = dimB(U ∩ Λ) = dimB(U ∩ Λ) = t(u),

where t(u) is the unique root of Bowen’s equation

PΛ(f 1,−t logA(u)(x, 1)) = 0.

This gives a formula for the dimension of W
(su)
loc (x) ∩ Λ for the partially hyperbolic

time-one diffeomorphism f 1. This formula is the same as the one for a u-conformal
diffeomorphism.

It is not known in general how to compute the dimension of W
(su)
loc (x) ∩ Λ for an

arbitrary partially hyperbolic diffeomorphism.

We now consider a basic set Λ for an s-conformal axiom A flow F = {f t}. Simi-
larly to (4.1) and (4.2) define the function

t(s)a(s)(x) (4.4)

on Λ where t(s) is a unique root of Bowen’s equation

PΛ(F, ta(s)) = 0 (4.5)

(see (A.16)-(A.18)). The function t(s)a(s) is Hölder continuous and therefore, there
exists a unique equilibrium measure corresponding to it. We denote this measure
by κ(s).

Given x ∈ Λ consider the conditional measures η(s)(y) on W
(s)
loc (y) ∩ R(x) (where

y ∈ R(x)) generated by the measure κ(s) on a Markov set R(x) containing x.
Similarly to Theorem 4.1, one can prove that for any x ∈ Λ and any open set

U ⊂ W
(s)
loc (x),

dimH(U ∩ Λ) = dimB(U ∩ Λ) = dimB(U ∩ Λ) = t(s).
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Moreover,

t(s) = − hκ(s)(f 1)∫
Λ
a(s)(y) dκ(s)(y)

, (4.6)

where hκ(s)(f 1) is the measure-theoretic entropy of the time-one map f 1 with respect
to the measure κ(s).

The t(s)-Hausdorff measure of U∩Λ is positive and finite. In addition, dη(s)(x)(y) =

t(s) for all y ∈ W
(s)
loc (x) ∩ R(x), and therefore dimH η

(s)(x) = t(s), i.e. the measure
η(s)(x) is the measure of full dimension.

We now consider the case when Λ is a basic set for an axiom A flow F = {f t}
which is both s- and u-conformal. Using Proposition 7.1 we compute the Hausdorff
dimension and box dimension of Λ.

Theorem 4.2. We have

dimH Λ = dimBΛ = dimBΛ = t(u) + t(s) + 1,

where t(u) and t(s) are unique roots of Bowen’s equations (4.2) and (4.5) and can be
computed by the formulae (4.3) and (4.6).

This result applies and produces a formula for the Hausdorff dimension and box
dimension of a basic set of an Axiom A flow on a surface which is clearly seen to be
both s- and u-conformal.

Consider the measures κ(u) and κ(s) on Λ, which are equilibrium measures for the
functions −t(u)a(u) and t(s)a(s) respectively. It is easy to see that

dimH κ
(u) ≤ t(u) + t(s) + 1, dimH κ

(s) ≤ t(u) + t(s) + 1.

Moreover, the equalities hold if and only if

κ(u) = κ(s) def
= κ. (4.7)

In this case, κ is the measure of full dimension. Condition (4.7) is a “rigidity” type
condition. It holds if and only if the functions −t(u)a(u)(x) and t(s)a(s)(x) are
cohomologous (see [8]). One can show that this is the case if and only if for any
periodic point x ∈ Λ of period p,

t(u)
∫ p

0

a(u)(f τ (x)) dτ = −t(s)
∫ p

0

a(s)(f τ (x)) dτ.

5. Multifractal Analysis of Conformal Axiom A Flows on Basic Sets

We undertake the complete multifractal analysis of equilibrium measures on a
locally maximal hyperbolic set Λ of a flow F = {f t} assuming that the flow is both
s- and u-conformal. We follow the approach suggested by Pesin and Weiss in [11]
(see also [10]).
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Let ϕ be a Hölder continuous function on Λ and ν = νϕ a unique equilibrium
measure for ϕ.

Recall that a measure ν on a metric space is called Federer if there exists a
constant K > 0 such that for any point x and any r > 0,

ν(B(x, 2r)) ≤ Kν(B(x, r)).

Theorem 5.1. The measure ν is Federer.

For α ≥ 0 consider the sets Λα defined by

Λα = {x ∈ Λ : dν(x) = α }
and the fν(α)-spectrum for dimensions fν(α) = dimH Λα (see (A.6)).

Theorem 5.2.

(1) The pointwise dimension dν(x) exists for ν-almost every x ∈ Λ and

dν(x) = hν(f
1)

(
1

λ+
ν

− 1

λ−ν

)
+ 1,

λ+
ν , λ

−
ν are positive and negative values of the Lyapunov exponent of ν (see

(3.3), (3.4)).
(2) If ν is not the measure of full dimension then the function fν(α) is defined

on an interval [α1, α2] (i.e., the spectrum is complete, see [14]); it is real
analytic and strictly convex.

(3) If ν is not the measure of full dimension then there exists a strictly con-
vex function T (q) such that the functions fν(α) and T (q) form a Legendre
transform pair (see (A.26)) and for any q ∈ R we have

T (q) = − lim
r→0

log infBr

∑
B∈Br

ν(B)q

log r
,

where the infimum is taken over all finite covers Br of Λ by open balls of
radius r; in particular, for every q > 1,

T (q)

1− q
= HPq(ν) = Rq(ν)

(see (A.7), (A.8), (A.9)).
(4) If ν is the measure of full dimension then T (q) = (1− q) dimH Λ is a linear

function; in addition, fν(dimH Λ) = dimH Λ and fν(α) = 0 for all α 6=
dimH Λ. In other words fν(α) is a δ-function if and only if ν is the measure
of full dimension.

Remark 5.1. Consider the case when ν is not the measure of full dimension.
Note that fν(α) ≤ dimH Λ for any α ∈ [α1, α2]. Since fν(α(q)) = T (q) + qα(q) (see
Appendix) we obtain that

f(α(0)) = T (0) = dimBΛ = dimBΛ = dimH Λ
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(see (A.1) and Theorem 4.2). Therefore, fν attains its maximum value dimH Λ at
the point α(0).

Differentiating the equality fν(α(q)) = T (q) + qα(q) with respect to q and using
the fact that α(q) = −T ′(q) we find that d

dα
fν(α(q)) = q for every real q. This

implies that

lim
α→α1

d

dα
fν(α(q)) = +∞, lim

α→α2

d

dα
fν(α(q)) = −∞, and

d

dα
fν(α(1)) = 1.

Since T (1) = 0 we have that f(α(1)) = α(1). It follows that the graph of the
function fν(α) is tangent to the line with slope 1 at the point α(1). One can show
that α(1) is the information dimension of ν (see [10]).

It easily follows from the above observations that dimH Λ ∈ (α1, α2).

Another consequence of Theorem 5.2 is the following multifractal decompo-
sition of a basic set Λ associated with the pointwise dimension of an equilibrium
measure ν corresponding to a Hölder continuous function. Namely,

Λ = Λ̂ ∪

(⋃
α

Λα

)
,

where Λα is the set of points for which the pointwise dimension takes on the value
α and the irregular part Λ̂ is the set of points with no pointwise dimension. One
can show that Λ̂ 6= ∅; moreover, it is everywhere dense in Λ and dimH Λ̂ = dimH Λ
(oral communication by L. Barreira). We also have that each set Λα is everywhere
dense in Λ.

An important manifestation of Theorem 5.2 is multifractal decomposition of
the basic set Λ associated with the Lyapunov exponent λ+(x) and λ−(x) (see (3.3),
(3.4)). We consider only positive Lyapunov exponent λ+(x); similar statements hold
true for the negative Lyapunov exponent λ−(x) at points x ∈ Λ. We can write

Λ = L̂+ ∪

(⋃
β∈R

L+
β

)
,

where
L̂+ = {x ∈ Λ : the limit in (3.3) does not exist}

is the irregular part, and

L+
β = {x ∈ Λ : λ+(x) = β}.

If ν is an ergodic measure for f t we obtain that λ+(x) = λ
(u)
ν for ν-almost every

x ∈ Λ. Thus, the set L+

λ
(u)
ν

6= ∅.
We introduce the dimension spectrum for (positive) Lyapunov exponents

by
`+(β) = dimH L

+
β .
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Let ϕ be a Hölder continuous function on Λ and ν the unique equilibrium measure
for ϕ. Let also R be a Markov set. For any y ∈ R we define a measure ν̃(u)(y) on

W
(u)
loc (y) ∩R as follows.
Let ϕ̃ be the pull back of ϕ to Λ(A,ψ) by the coding map χ. The unique equilib-

rium measure corresponding to ϕ̃ is

λµ = ((µ×m)(Yψ))−1 (µ×m)|Yψ ,
where m is the Lebesgue measure on R and µ is the unique equilibrium measure on
ΣA corresponding to the Hölder continuous function

Ψ(ω) =

∫ ψ(ω)

0

ϕ̃(ω, t) dt− PΛ(A,ψ)(S, ϕ̃)ψ(ω)

(see Proposition 8.5).
We define the measure µ(u) on Σ+

A such that for any cylinder Ci0...in in ΣA and its
projection C+

i0...in
to Σ+

A,

µ(u)(C+
i0...in

) = µ(Ci0...in). (5.1)

Similarly, we define the measure µ(s) on Σ−
A such that for any cylinder Ci−n...i0 in ΣA

and its projection C−i−n...i0 to Σ−
A,

µ(s)(C−i−n...i0) = µ(Ci−n...i0). (5.2)

There exist constants K1, K2 > 0 such that for every integers m,n ≥ 0, and any
(. . . i−1i0i1 . . . ) ∈ ΣA,

K1 ≤
µ(Ci−m...in)

µ(s)(C−i−m...i0)× µ(u)(C+
i0...in

)
≤ K2

(see [10]).
Let Π be a rectangle corresponding to R (see (2.5)), and x ∈ Π. Denote by ν(u)(x)

the push forward of µ(u) to W
(u)
loc (x,Π) by the coding map χ. Let y ∈ R(x), then

W
(u)
loc (y)∩R(x) is naturally diffeomorphic to W

(u)
loc (x′,Π) for some x′ ∈ Π. Denote by

ν̃(u)(y) the push forward of ν(u)(x′) to W
(u)
loc (y) ∩ R(x). Note that ν̃(u)(y) is defined

for every y ∈ R, and it is equivalent to the conditional measure generated by ν on

W
(u)
loc (y) ∩R for ν-almost every y ∈ R.

There is a relation between the positive Lyapunov exponent λ+(x) and the point-
wise dimension d

ν
(u)
max(x)

(x), where νmax is the measure of maximal entropy. For

dynamical systems with discrete time this relation was first described by Weiss (see
[15]). Notice that the measure of maximal entropy is a unique equilibrium measure
corresponding to the function ϕ = 0.

Proposition 5.1.

L+
β =

{
x ∈ Λ : d

ν̃
(u)
max(x)

(x) =
hΛ(f 1)

β

}
, where ν̃(u)

max(x) is defined as above.
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Recall that we denoted by κ(u) the unique equilibrium measure corresponding to
the function −t(u)a(u), where t(u) is defined by (4.2). Let η̃(u)(x) be the measure on

W
(u)
loc (x) ∩ R(x) defined as above. Theorem 4.1 implies that η̃(u)(x) is the measure

of full dimension. This together with Theorem 5.2 and Proposition 5.1 implies the
following result.

Theorem 5.3.

(1) If ν̃
(u)
max(x) is not equivalent to the measure η̃(u)(x) for some x ∈ Λ then the

Lyapunov spectrum `+(β) is a real analytic strictly convex function on an
interval [β1, β2] containing the point

β = hΛ(f 1)/ dimH(Λ ∩W (u)
loc (x)).

(2) If ν̃
(u)
max(x) is equivalent to η̃(u)(x) for some x ∈ Λ then the Lyapunov spectrum

is a delta function, i.e.,

`+(β) =

{
dimH Λ, for β = hΛ(f 1)/ dimH(Λ ∩W (u)

loc (x))

0, for β 6= hΛ(f 1)/ dimH(Λ ∩W (u)
loc (x)).

Remark 5.2. One can show that if the measures ν̃
(u)
max(x) and η̃(u)(x) are equiv-

alent for some x ∈ Λ then they are equivalent for all x ∈ Λ.

As an immediate consequence of Theorem 5.3 we obtain the following statement.

Corollary 5.1. Assume that the measure ν̃
(u)
max is not equivalent to the measure

η̃(u)(x) for some x ∈ Λ then the range of the function λ+(x) is an interval [β1, β2] and
for any β outside this interval the set L+

β is empty (i.e., the spectrum is complete,
see [14]); in particular, the Lyapunov exponent attains uncountably many distinct
values.

One can also show that the set L̂+ is not empty and has full Hausdorff dimension
(oral communication by L. Barreira).

Consider the geodesic flow on compact surface on negative curvature. Since the
flow is conformal (see Section 3) the above results apply and give a complete de-
scription of the dimension spectrum for Lyapunov exponents. In particular, this
spectrum is a δ-function if and only if the Liouville measure is the measure of max-
imal entropy and hence, the topological entropy of the flow coincide with its metric
entropy (with respect to the Liouville measure). This implies that the curvature is
constant.

Remark 5.3 The above results provide a complete description of the dimension
spectra for pointwise dimensions and Lyapunov exponents for the time-one map of
a conformal axiom A flow.
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6. Moran Covers

Let x ∈ Λ and Π be a rectangle containing x. We construct a special cover of

the set W
(u)
loc (x,Π) which will be an “optimal” cover in computing the Hausdorff

dimension and box dimensions.
Let x ∈ Γ′(T) and t > 0 be a number such that f tx ∈ T. Let also Πf tx be the

rectangle containing f tx. For any point y ∈ W
(u)
loc (f tx,Πf tx) there exists a unique

number τ(y) > 0 such that f−τ(y)y ∈ W (u)
loc (x,Π) and the points f−τy (0 ≤ τ ≤ τ(y))

and f−τ (f tx) (0 ≤ τ ≤ t) visit the same rectangles in the same order. Define

Q(x, t) = { f−τ(y)y, y ∈ W (u)
loc (f tx,Πf tx) } ⊂ W

(u)
loc (x,Π).

Lemma 6.1.

(1) Q(x, t) contains a ball in W
(u)
loc (x,Π) of radius r(x, t) and is contained in a

ball in W
(u)
loc (x,Π) of radius r(x, t).

(2) There exist positive constants K1 and K2 independent of x and t such that
for any y ∈ Q(x, t).

K1

(
exp

∫ τ(y)

0

a(u)(f τy) dτ

)−1

≤ r(x, t) ≤ r(x, t)

≤ K2

(
exp

∫ τ(y)

0

a(u)(f τy) dτ

)−1

.

We assume that the rectangles Π are small so that K2 < 1.

Fix a number r > 0. For any y ∈ W
(u)
loc (x,Π) ∩ Γ′(T) let t(y) be the smallest

number such that f t(y)y ∈ T and(
exp

∫ t(y)

0

a(u)(f τy) dτ

)−1

≤ r. (6.1)

Among all points z such that z ∈ Q(y, t(y)) choose a point z0 for which t(z0) is
minimal. Let

Q(y) = Q(z0, t(z0)).

The properties of the Markov collection T imply that the sets Q(y) for different

y ∈ W (u)
loc (x,Π)∩Γ′(T) either coincide or overlap only along their boundaries. These

sets comprise a cover of W
(u)
loc (x,Π) which we call a Moran cover of W

(u)
loc (x,Π) of

size r.

We can also construct a Moran cover of W
(u)
loc (x,Π) using the symbolic represen-

tation of the flow (see Proposition 2.1 and Appendix). Recall that any x ∈ Λ is the
image under the coding map χ of a point (ω, t) ∈ Λ(A,ψ). If y ∈ T then y = χ(ω, 0)
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for some ω ∈ ΣA. If a number t > 0 is such that f τy 6∈ T for 0 < τ ≤ t then
f ty = χ(ω, t).

Let ã(u) and ã(s) be the pull back of the functions a(u) and a(s) to Λ(A,ψ) by
the coding map χ. Let also a(s) and a(u) be the Hölder continuous function on ΣA

defined by

a(s)(ω) = exp

∫ ψ(ω)

0

ã(s)(ω, t) dt, a(u)(ω) = exp

∫ ψ(ω)

0

ã(u)(ω, t) dt. (6.2)

Choose ω̂ = (. . . i−1i0i1 . . . ) ∈ ΣA such that x = χ(ω̂). We identify the set of points
in ΣA having the same past as ω̂ with the cylinder C+

i0
⊂ Σ+

A.
Given r > 0 and a point ω ∈ C+

i0
choose the number n(ω) such that

n(ω)−1∏
k=0

(a(u)(σkω))−1 > r,

n(ω)∏
k=0

(a(u)(σkω))−1 ≤ r (6.3)

(compare to (6.1)). It is easy to see that n(ω) →∞ as r → 0 uniformly in ω.
For any ω ∈ C+

i0
consider the cylinder C+

i0...in(ω)
. Let C(ω) ⊂ C+

i0
be the largest

cylinder set containing ω with the property that C(ω) = C+
i0...in(ω′)

for some ω′ ∈
C(ω) and C+

i0...in(ω′′)
⊂ C(ω) for any ω′′ ∈ C(ω). The sets corresponding to different

ω ∈ C+
i0

either coincide or are disjoint. Thus, we obtain a cover Ur(C
+
i0

) of C+
i0

of
size r which we also call a Moran cover.

Similarly one can construct a Moran cover Ur(C
−
i0

) of C−i0 of size r.
The sets

Q = χ(C), C ∈ Ur(C
+
i0

)

comprise a cover of W
(u)
loc (x,Π) which is a Moran cover of W

(u)
loc (x,Π) of size r. These

sets may overlap only along their boundaries.

Lemma 6.1 implies that a Moran cover has the following properties:

(6.4) Any element of the cover is contained in a ball of radius r and contains a

ball of radius K1 r in W
(u)
loc (x,Π), where K1 is a constant independent of r.

(6.5) The number of elements of the cover which intersects a ball B(x, r) ⊂
W

(u)
loc (x,Π) is bounded from above by a constant M independent of x and r. The

number M is called the Moran multiplicity factor.

Let x be a point in a rectangle Π. Starting with a Moran cover of W
(u)
loc (x,Π) we

will obtain a cover of the rectangle Π by the sets

Q(y) =
⋃

z∈Q(y)

W
(s)
loc (z,Π).
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We call this cover the extended Moran cover corresponding to a given Moran
cover. It follows from Lemma 6.1 and the construction of the sets Q(y) that

sup
z∈Q(y)

(
exp

∫ t(z)

0

a(u)(f τz) dτ

)−1

≤ K3 r, (6.6)

where t(z) is defined by (6.1) and K3 is a constant.

7. Proofs

Proof of Theorem 4.1. We first show that t(u) ≤ d := dimHW
(u)
loc (x,Π) for any

x ∈ Γ′(T).
Fix ε > 0. By the definition of the Hausdorff dimension there exists a number

r > 0 and a cover of W
(u)
loc (x,Π) by balls Bl, l = 1, 2, . . . of radius rl ≤ r such that∑

l

rd+εl ≤ 1.

For every l > 0 consider a Moran cover of W
(u)
loc (x,Π) of size rl and the corresponding

extended Moran cover of Π. Choose those sets from the extended cover that intersect
Bl. Denote them by Q

(1)
l , . . . ,Q

(m(l))
l . The collection of sets {Q(j)

l }
l=1,2,...
j=1,...m(l) forms a

cover of Π which we denote by G.
By (6.5), m(l) ≤ M, l = 1, 2, . . . , where M is a Moran multiplicity factor.

Using (6.6) we conclude that∑
Q

(j)
l ∈G

sup
z∈Q

(j)
l

(
exp

∫ t(z)

0

a(u)(f τz) dτ

)−(d+ε)

≤M
∑
l

(K3 rl)
d+ε ≤ K4,

where K4 is a constant. The cylinders C
(j)
l = χ−1Q

(j)
l , Q

(j)
l ∈ G form a cover G̃ of

Ci0 = χ−1(Π) for which

∑
C

(j)
l ∈G̃

sup
ω∈C(j)

l

exp

n(ω)−1∑
k=0

∫ ψ(σkω)

0

ã(u)(σkω, τ) dτ

−(d+ε)

≤ K4,

where n(ω) is defined by (6.3). Let

ϕ(ω) = −(d+ ε)

∫ ψ(ω)

0

ã(u)(ω, τ) dτ.

Note that the cylinders C
(j)
l are of the form C+

i0...in(ω(l,j))
. Given a number N > 0

choose r so small that n(ω) ≥ N for any ω ∈ ΣA. Then

M(Ci0 , 0, ϕ,U
(0), N) ≤

∑
C

(j)
l ∈G̃

sup
ω∈C(j)

l

exp

n(ω)−1∑
k=0

ϕ(σkω)

 ≤ K4,
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where U(0) is the cover of ΣA by cylinders Ci = {ω ∈ ΣA : ω0 = i} (see (A.13)).
Let U(k) be the cover of ΣA by cylinders Ci−k...ik . It follows from the definition of

M that

M(Ci0 , 0, ϕ,U
(k), N) ≤ |A|kM(Ci0 , 0, ϕ,U

(0), N + k) ≤ K5,

where |A| is the number of elements in the alphabet A. This implies that

mc(Ci0 , 0, ϕ,U
(k)) ≤ K5 and P̃Ci0 (ϕ,U

(k)) ≤ 0

(see (A.14), (A.15)). Hence, P̃Ci0 (σ, ϕ) ≤ 0 and

PΣA(σ, ϕ) = P̃ΣA(σ, ϕ) = max
1≤i≤n

P̃Ci(σ, ϕ) ≤ 0.

We now estimate the topological pressure of the function−(d+ε)ã(u) on Λ(A,ψ) with
respect to the suspension flow S. It is known (see [9]) that PΛ(A,Ψ)(S,−(d+ ε)ã(u))
is the unique real number c such that PΣA(σ, ϕ− cψ) = 0, and PΣA(σ, ϕ− cψ) is a
decreasing function over c. This implies that

PΛ(A,Ψ)(S,−(d+ ε)ã(u)) = c ≤ 0.

It follows that t(u) ≤ d+ε. Since the inequality holds true for any ε > 0, we conclude
that t(u) ≤ d. This easily implies that t(u) ≤ dimH(U ∩ Λ) for any x ∈ Λ and any

open set U ⊂ W
(u)
loc (x).

We prove that d = dimB(U) ≤ t(u), where U is an open set in W
(u)
loc (x)∩Λ. Recall

that

d = lim sup
ε→0

logN(U, ε)

log (1/ε)
,

where N(U, ε) is the maximal cardinality of an ε-separated set in U . For any δ > 0

there exists a sequence {εk}, εk → 0, such that N(U, εk) ≥ (1/εk)
d−δ for any k > 0.

Fix ε > 0. Take εk < ε and let Xεk be an εk-separated set in U . For any y ∈ Xεk

let τ(y) be the number for which

exp

∫ τ(y)

0

a(u)(f τy)dτ =
2ε

εk
.

We have that

τ(y) min
Λ

a(u) ≤ log
2ε

εk
≤ τ(y) max

Λ
a(u).

It follows that

τ(y) ∈
[
K6 log

1

εk
, K7 log

1

εk

]
.

This implies that there exists a number tk such that

card { y ∈ Xεk : τ(y) ∈ [tk − 1, tk] } ≥ (1/εk)
d−δ

K8 log (1/εk)
.
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Let Ek = { y ∈ Xεk : τ(y) ∈ [tk − 1, tk] }. If εk is sufficiently small we obtain

cardEk ≥ (1/εk)
d−2δ.

By construction, Ek is an (ε, tk)-separated set in Λ. Hence,

Ztk(F,−(d− 2δ)a(u), ε) ≥
∑
y∈Ek

exp

∫ tk

0

−(d− 2δ)a(u)(f τy)dτ

≥ K9

∑
y∈Ek

(
exp

∫ τ(y)

0

a(u)(f τy)dτ

)−(d−2δ)

≥ K9

(
1

εk

)d−2δ (
2ε

εk

)−(d−2δ)

≥ K10

(see (A.16), (A.17), (A.18)).
Note that tk →∞ as k →∞. Therefore,

PΛ(F,−(d− 2δ)a(u), ε) ≥ 0 and PΛ(F,−(d− 2δ)a(u)) ≥ 0.

It follows that d − 2δ ≤ t(u). Since the inequality holds true for any δ > 0, we
conclude that d ≤ t(u) and complete the proof of the first statement.

Since κ(u) is the unique equilibrium measure corresponding to the Hölder contin-
uous function −t(u)a(u)(x), we have

0 = PΛ(−t(u)a(u)) = hκ(u)(f 1)− t(u)
∫

Λ

a(u)(y) dκ(u)(y)

(see (4.1), (4.2), (A.21)), and the second statement follows.

We will prove the last three statements of the theorem.
Consider the function −t(u)ã(u) which is the pull back of the function −t(u)a(u)(x)

to Λ(A,ψ) by the coding map χ. The unique equilibrium measure corresponding to
−t(u)ã(u) is equal to

λϑ = ((ϑ×m)(Yψ))−1(ϑ×m)|Yψ ,
where ϑ is the unique equilibrium measure corresponding to the Hölder continuous
function

−t(u)
∫ ψ(ω)

0

ã(u)(ω, t) dt = −t(u) log a(u)(ω)

on ΣA and m is the Lebesgue measure on R (see (A.25), (A.26), Proposition 8.5).
Since PΛ(A,ψ)(S,−t(u)ã(u)) = 0, we obtain that

PΣA(σ,−t(u) log a(u)) = 0.
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Therefore, there exist constants K11, K12 > 0 such that for any ω ∈ ΣA and any
n > 0

K11 ≤
ϑ{ω′ : ω′i = ωi, i = 0, . . . , n}

n∏
k=0

(a(u)(σkω))
−t(u)

≤ K12 (7.1)

(see Proposition 8.4).
Let Π be a rectangle, and x ∈ Π. Let also Ci0 be the cylinder such that Ci0 =

χ−1(Π). We introduce the measure ϑ(u) on Σ+
A such that for any cylinder Ci0...in ⊂

ΣA and its projection C+
i0...in

to Σ+
A

ϑ(u)(C+
i0...in

) = ϑ(Ci0...in).

Let ξ(u)(x) is the push forward of ϑ(u) to W
(u)
loc (x,Π) by the coding map. Then

ξ(u)(x) is equivalent to the conditional measure on W
(u)
loc (x,Π) generated by the

measure κ(u).
Let B(y, r) be a ball in W

(u)
loc (x,Π) of radius r. Consider a Moran cover of

W
(u)
loc (x,Π) of size r. Let Q1, . . . , Qm be the elements of this cover which inter-

sect the ball B(y, r). Recall that Qj = C(ω(j)) for some ω(j) ∈ Σ+
A (see Section 6).

We have

ξ(u)(B(y, r)) ≤
m∑
j=1

ξ(u)(Qj) =
m∑
j=1

ϑ(u)(C(ω(j)))

≤ K12

m∑
j=1

n(ω(j))∏
k=0

a(u)(ω(j))

−t(u)

≤ K12M rt
(u)

,

(7.2)

where M is the Moran multiplicity factor, that does not depend on r (see (6.3),
(6.5), (7.1)).

Let ω = (. . . i−1i0i1 . . . ) ∈ ΣA be such that y = χ(ω). Consider the cylinder
C+
i0...in(ω)

, where n(ω) is defined by (6.3). Then χ(C+
i0...in(ω)

) is contained in B(y, r).

Thus, by (7.1),

ξ(u)(B(y, r)) ≥ ϑ(u)(C+
i0...in(ω)

)

≥ K11

n(ω)∏
k=0

a(u)(ω)

−t(u)

≥ K13 r
t(u)

.
(7.3)

It follows from (7.2) and (7.3) that dξ(u)(x)(y) = t(u) for all y ∈ W
(u)
loc (x,Π). This

together with Proposition 8.2 implies that dimH ξ
(u)(x) = t(u).

Let G be a finite or countable cover of an open set U ⊂ W
(u)
loc (x,Π) by open sets

V with diamV ≤ ε. For any V ∈ G there exists a ball B such that V ⊂ B and
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diamB ≤ 2 diamV . Such balls comprise a cover B of U . By (7.2),∑
V ∈G

(diamV )t
(u) ≥

∑
B∈B

(
diamB

2

)t(u)

≥ 1

K12M

∑
B∈B

ξ(u)(B) ≥ K14 ξ
(u)(U),

and hence, mH(U, t(u)) ≥ K14 ξ
(u)(U) (see (A.2)).

Given δ > 0 there exists ε > 0 such that for any cover G of U with diamG ≤ ε,

mH(U, t(u)) ≤
∑
V ∈G

(diamV )t
(u)

+ δ.

Let B be a finite or countable cover of U by balls of diameter at most ε such that∑
B∈B

ξ(u)(B) ≤ ξ(u)(U) + δ.

Using (7.3) we conclude that

mH(U, t(u)) ≤
∑
B∈B

(diamB)t
(u)

+ δ ≤ 1

K13

∑
B∈B

ξ(u)(B) + δ

≤ ξ(u)(U)

K13

+

(
1

K13

+ 1

)
δ.

Since δ can be chosen arbitrarily, it follows that mH(U, t(u)) ≤ 1
K13

ξ(u)(U).

Note that W
(u)
loc (x,Π) is diffeomorphic to W

(u)
loc (x) ∩ R(x), and the push forward

of ξ(u)(x) to W
(u)
loc (x) ∩ R(x) is equivalent to η(u)(x). Statements 3, 4 and 5 of the

theorem follow. �

Proof of Theorem 4.2. The following statement is a corollary of results by
Hasselblatt [6].

Lemma 7.1. Let F be a conformal axiom A flow on a basic set Λ. Then the weak
unstable distribution E(u)⊕X and the weak stable distribution E(s)⊕X are Lipschitz.

Recall that any rectangle Π lies in a small disk of co-dimension one which is
transversal to the flow. The lemma implies that Π has a Lipschitz continuous local
product structure. Since

dimH(W
(u)
loc (x,Π)) =dimB(W

(u)
loc (x,Π)) = t(u), and

dimH(W
(s)
loc (x,Π)) =dimB(W

(s)
loc (x,Π)) = t(s)

for any x ∈ Π, the Proposition 8.1 implies that

dimH Π = dimBΠ = dimBΠ = t(u) + t(s).

The theorem follows since Λ is locally diffeomorphic to the product of a rectangle
and an interval.

�



22 YA. B. PESIN, V. SADOVSKAYA

Proof of Theorem 5.1. We begin with the following observation.
Let ϕ̃ be the pull back of ϕ to Λ(A,ψ) by the coding map χ. The unique equilib-

rium measure corresponding to ϕ̃ is equal to

λµ = ((µ×m)(Yψ))−1(µ×m)|Yψ ,
where µ is the unique equilibrium measure corresponding to the Hölder continuous
function log Φ on ΣA such that

log Φ(ω) =

∫ ψ(ω)

0

ϕ̃(ω, t) dt− cψ(ω),

and c = PΛ(A,ψ)(S, ϕ̃). Note that PΛ(σ, log Φ) = 0. (See (A.25), (A.26), Proposi-
tion 8.5.)

Let us introduce the functions

log Φ(u)(ω+) = − lim
n→∞

log
µ(Ci1...in)

µ(Ci0...in)
,

log Φ(s)(ω−) = − lim
n→∞

log
µ(Ci−n...i−1)

µ(Ci−n...i0)
,

where ω+ = (i0i1 . . . in . . . ) ∈ Σ+
A and ω− = (. . . i−n . . . i−1i0) ∈ Σ−

A.
One can show that the above limits exist, the functions log Φ(u) and log Φ(s) are

Hölder continuous, and they are projections to Σ+
A and Σ−

A respectively of functions
on ΣA which are strictly cohomologous to log Φ (see [10]). In particular,

PΣ+
A
(log Φ(u)) = PΣ−

A
(log Φ(s)) = 0.

We introduce the measures µ(u) on Σ+
A and µ(s) on Σ−

A as in (5.1) and (5.2). The
measures µ(u) and µ(s) are unique equilibrium measures corresponding to the Hölder
continuous function log Φ(u) and log Φ(s) respectively (see [10]).

It follows from the definition of the equilibrium measure (see (A.12)) that∫
Σ+
A

log Φ(u)(ω+) dµ(u) =

∫
Σ−
A

log Φ(s)(ω−) dµ(s) =

∫
ΣA

log Φ(ω) dµ

= −hµ(u)

(
σ|Σ+

A

)
= −hµ(s)

(
σ|Σ−

A

)
= −hµ(σ).

(7.4)

Starting with the functions a(s) and a(u) one can similarly define functions a(ss)

on Σ−
A and a(uu) on Σ+

A which are projections of functions strictly cohomologous to
a(s) and a(u) respectively.

We proceed with the proof of Theorem 5.1. Consider a rectangle Π and a point

x ∈ int Π. Let ν(u) be the push forward of the measure µ(u) to W
(u)
loc (x,Π) by the

coding map χ. Then ν(u) is equivalent to the conditional measure on W
(u)
loc (x,Π)

generated by ν.
We will show that the measure ν(u) is Federer.
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Since PΣ+
A
(log Φ(u)) = 0 we conclude that there exist constants K1 and K2 such

that for any ω ∈ Σ+
A

K1 ≤
µ(u){ω′ : ω′i = ωi, i = 0, . . . , n}

n∏
k=0

Φ(u)(σk(ω))
≤ K2 (7.5)

(see Proposition 8.4).

Given a number r > 0 consider a Moran cover of W
(u)
loc (x,Π) of size r. Fix a point

y ∈ W (u)
loc (x,Π). Let Q0 be an element of the Moran cover that contains y. Let also

Q0, . . . Qm be the elements of the Moran cover that intersect B(y, 2r). Recall that
Qj = χ(C(ω(j))) for some ω(j) ∈ Σ+

A (see Section 6). By the property (6.5) of the

Moran cover, we have that m ≤ M̃ , where M̃ is a constant independent of y and r.
Since diamQ0 < r, we obtain

Q0 ⊂ B(y, r) ⊂ B(y, 2r) ⊂
m⋃
j=0

Qj.

Since a(u) is a Hölder continuous function on ΣA, it is easy to show that there exist
positive constants L1 and L2 such that

L1 ≤

n(ω(0))∏
k=0

(
a(u)(σk(ω(0)))

)−1

n(ω(0))∏
k=0

(a(u)(σk(ω(j))))
−1

≤ L2,

where n(ω) is defined by (6.3). This implies that |n(ω(0))−n(ω(j))| ≤ K3, where K3

is a constant independent of j and r. So we conclude that

K4 ≤

n(ω(0))∏
k=0

Φ(u)(σk(ω(0)))

n(ω(j))∏
k=0

Φ(u)(σk(ω(j)))

≤ K5. (7.6)

It follows from (7.5) and (7.6) that

ν(u)(B(y, 2r)) ≤
m∑
j=1

ν(u)(Qj) =
m∑
j=1

µ(u)(C(ω(j)))

≤ K2

m∑
j=1

n(ω(j))∏
k=0

Φ(u)(σk(ω(j))) ≤ K2M̃
1

K4

n(ω(0))∏
k=0

Φ(u)(σk(ω(0)))

≤ K2M̃
1

K4

1

K1

µ(u)(C(ω(0))) = K6 ν
(u)(Q0) ≤ K6 ν

(u)(B(y, r)).
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Let ν(s) be the push forward of µ(s) to W
(s)
loc (x,Π). Arguing similarly one can prove

that ν(s) is Federer.
Since the measure ν is locally equivalent to the product ν(u) × ν(s) ×m (where m

is the Lebesgue measure), it is also Federer. �

Proof of Theorem 5.2. First we define the “symbolic” level set. Given 0 < r < 1
and ω ∈ ΣA, choose n− = n−(ω, r) and n+ = n+(ω, r) such that

0∏
k=1−n−

|a(ss)(σk(ω−))| > r,

0∏
k=−n−

|a(ss)(σk(ω−))| ≤ r,

n+−1∏
k=0

|a(uu)(σk(ω+))|−1 > r,

n+∏
k=0

|a(uu)(σk(ω+))|−1 ≤ r.

(7.7)

Fix a number α̃ ≥ 0 and let J̃α̃ be the set of points ω in ΣA for which the limit

lim
r→0


0∑

k=−n−
log Φ(s)(σk(ω−))

0∑
k=−n−

log |a(ss)(σk(ω−))|
−

n+∑
k=0

log Φ(u)(σk(ω+))

n+∑
k=0

log |a(uu)(σk(ω+))|


exists and is equal to α̃.

Lemma 7.2. Let Λ̃α = { (ω, t) ∈ Λ(A,ψ) : ω ∈ J̃α−1}. Then χ(Λ̃α) = Λα.

Proof. Let Jα−1 = {x ∈ T : dν(u)×ν(s)(x) = α−1} and B(u)(x, r) a ball in W
(u)
loc (x,Π)

centered at x ∈ Jα−1. Fix x and choose ω = (. . . i−1i0i1 . . . ) ∈ ΣA such that
x = χ(ω). Consider the cylinder C+

i0...in(ω)
, where n(ω) is defined by (6.3). Let

Q(u)(x, r) = χ(C+
i0...in(ω)

). We have x ∈ Q(u)(x, r) and diamQ(u)(x, r) < r. Therefore,

Q(u)(x, r) ⊂ B(u)(x, r). Since Q(u)(x, r) contains a ball of radius K1r and ν(u) is
Federer, we obtain

µ(u)(C+
i0...in(ω)

) = ν(u)(Q(u)(x, r)) ≤ ν(u)(B(u)(x, r)) ≤

K7 ν
(u)(Q(u)(x, r)) = K7 µ

(u)(C+
i0...in(ω)

).

It follows from (7.5) and (7.7) that

lim
r→0

 log ν(u)(B(u)(x, r))

log r
×

n+∑
k=0

log |a(uu)(σk(ω+))|−1

n+∑
k=0

log Φ(u)(σk(ω+))

 = 1.
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Arguing similarly one can show that

lim
r→0

 log ν(s)(B(s)(x, r))

log r
×

0∑
k=−n−

log |a(ss)(σk(ω−))|

0∑
k=−n−

log Φ(s)(σk(ω−))

 = 1,

where B(s)(x, r) are balls in W
(s)
loc (x,Π).

This implies that Jα−1 = χ(J̃α−1). Since locally Λα is a direct product of Jα−1

and an interval, Λα = χ(Λ̃α). The lemma is proven. �

We proceed with the proof of Theorem 5.2. Consider the one-parameter families
of functions on ΣA

ϕ(u)
q (ω) = −T̃ (u)(q) log |a(u)(ω)|+ q log Φ(ω),

ϕ(s)
q (ω) = T̃ (s)(q) log |a(s)(ω)|+ q log Φ(ω),

(7.8)

where T̃ (u)(q) and T̃ (s)(q) are chosen such that

PΣA(ϕ(u)
q ) = 0 and PΣA(ϕ(s)

q ) = 0. (7.9)

It is known that that the functions T̃ (u) and T̃ (s) are real analytic (see [10]).
We introduce the functions

ϕ(uu)
q (ω+) = −T̃ (u)(q) log |a(uu)(ω+)|+ q log Φ(u)(ω+),

ϕ(ss)
q (ω−) = T̃ (s)(q) log |a(ss)(ω−)|+ q log Φ(s)(ω−),

which are projections to Σ+
A and Σ−

A of functions strictly cohomologous to ϕ
(u)
q and

ϕ
(s)
q respectively.

Let µ
(u)
q and µ

(s)
q be the equilibrium measures corresponding to the Hölder con-

tinuous functions ϕ
(uu)
q on Σ+

A and ϕ(ss) on Σ−
A respectively.

For each real q define

α̃(u)(q) = −

∫
Σ+
A

log Φ(u)(ω+) dµ
(u)
q∫

Σ+
A

log |a(uu)(ω+)| dµ(u)
q

, α̃(s)(q) =

∫
Σ−
A

log Φ(s)(ω−) dµ
(s)
q∫

Σ−
A

log |a(ss)(ω−)| dµ(s)
q

.

Note that
∫

Σ+
A

log |a(uu)(ω+)| dµ(u)
q > 0. The variational principle implies that∫

Σ+
A

log Φ(u)(ω+) dµ(u)
q ≤ PΣ+

A
(log Φ(u)) = 0

(see (A.11)), and hence α̃(u)(q) > 0 for all q ∈ R. Similarly, α̃(s)(q) > 0 for all q ∈ R.
It is known that α̃(u)(q) = −(T̃ (u))′ (q) and α̃(s)(q) = −(T̃ (s))′(q) (see [10]), in

particular, (T̃ (u))′ (q) < 0 and (T̃ (s))′ (q) < 0 for all q ∈ R.
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Lemma 7.3.

(1) If ν(u) is the measure of full dimension then

T̃ (u)(q) = (1− q) dimHW
(u)
loc (x,Π), and

dν(u)(y) = t(u) for all y ∈ W (u)
loc (x,Π),

(7.10)

where t(u) is defined by (4.2).
(2) If ν(u) is not the measure of full dimension, then (T̃ (u))′′(q) > 0 for all q ∈ R.

Proof. Recall that the conditional measure on W
(u)
loc (x,Π) generated by the measure

κ(u) is the measure of full dimension, where κ(u) is the unique equilibrium measure
on Λ for the function −t(u)a(u).

1. If ν(u) is the measure of full dimension, then µ(u) is the equilibrium measure for
the function −t(u) log |a(uu)|, and therefore the functions log Φ(u) and −t(u) log |a(uu)|
are cohomologous (see Appendix). Since

PΣ+
A

(
log Φ(u)

)
= PΣ+

A

(
−t(u) log |a(uu)|

)
= 0,

the functions are strictly cohomologous. It follows that

0 = PΣA

(
ϕ(u)
q

)
= PΣ+

A

(
ϕ(uu)
q

)
= PΣ+

A

(
(−T̃ (u)(q)− qt(u)) log |a(uu)|

)
.

By the definition of t(u) (see (4.2)), −T̃ (u)(q) − q t(u) = −t(u), and hence T̃ (u)(q) =

(1− q)t(u) = (1− q) dimHW
(u)
loc (x,Π).

The third statement of Theorem 4.1 implies that if ν(u) is the measure of full

dimension, then dν(u)(y) = t(u) for all y ∈ W (u)
loc (x,Π).

2. It is known that (T̃ (u))′′(q) > 0 for some q if the functions log Φ(u) and
−(T̃ (u))′(q) log |a(uu)| are not cohomologous (see [10]). Assume that the functions
are cohomologous for some q. Since (T̃ (u))′(q) = −α̃(u)(q), it is easy to see that∫

Σ+
A

(
log Φ(u)(ω+) + (T̃ (u))′(q) log |a(uu)(ω+)|

)
dµ(u)

q = 0.

This implies that the functions log Φ(u) and −(T̃ (u))′(q) log |a(uu)| are strictly coho-
mologous, and hence

PΣ+
A

(
−(T̃ (u))′(q) log |a(uu)|

)
= PΣ+

A

(
log Φ(u)

)
= 0

(see Appendix). It follows that (T̃ (u))′(q) = t(u), and ν(u) is the measure of full
dimension. �

Similarly to Lemma 7.3, one can prove that
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(1) If ν(s) is the measure of full dimension then

T̃ (s)(q) = (1− q) dimHW
(s)
loc (x,Π), and

dν(s)(y) = t(s) for all y ∈ W (s)
loc (x,Π),

(7.11)

where t(s) is defined by (4.5).
(2) If ν(s) is not the measure of full dimension, then (T̃ (s))′′(q) > 0 for all q ∈ R.

Set T̃ (q) = T̃ (u)(q) + T̃ (s)(q), and α̃(q) = α̃(s)(q) + α̃(u)(q). We can conclude that
α̃(q) = −T̃ ′(q), in particular, T̃ ′ < 0, T̃ ′′ ≥ 0, and T̃ ′′ > 0 if and only if either ν(s)

or ν(u) is not the measure of full dimension.

Assume that ν is not the measure of full dimension and hence, ν(s) or ν(u) is not
the measure of full dimension.

We define the measure µq = µ
(u)
q × µ

(s)
q . Since the measures µ

(u)
q and µ

(s)
q are

ergodic, it follows from the Birkhoff ergodic theorem that for µq-a.e. ω ∈ ΣA

lim
r→0


0∑

k=−n−
log Φ(s)(σk(ω−))

0∑
k=−n−

log |a(ss)(σk(ω−))|
−

n+∑
k=0

log Φ(u)(σk(ω+))

n+∑
k=0

log |a(uu)(σk(ω+))|

 = α̃(q). (7.12)

Lemma 7.4. For all ω = (. . . i−1i0i1 . . . ) ∈ J̃α̃(q)

lim
r→0

log µq(Ci−n− ...in+ )

log r
= T̃ (q) + qα̃(q),

where n− = n−(ω, r) and n+ = n+(ω, r) are defined by (7.7).

Proof. Since µ
(s)
q and µ

(u)
q are equilibrium measures corresponding to the functions

ϕ
(ss)
q and ϕ(uu), Proposition 8.4 implies that the ratios

µ
(s)
q (C−in− ...i0)

0∏
k=−n−

a(ss)(σk(ω−))T̃ (s)(q) Φ(s)(σk(ω−))q

and

µ
(u)
q (Ci0...in+ )

n+∏
k=0

a(uu)(σk(ω+))T̃ (u)(q) Φ(u)(σk(ω+))q
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are bounded from below and from above by constants independent of ω and r.
Hence, for all ω ∈ J̃α̃(q),

lim
r→0

log µq(Ci−n− ...in+ )

log r

= lim
r→0

T̃ (s)(q) log
0∏

k=−n−
|a(ss)(σk(ω−))|+ T̃ (u)(q) log

n+∏
k=0

|a(uu)(σk(ω+))|−1

log r

+ q lim
r→0


0∑

k=−n−
log Φ(s)(σk(ω−))

0∑
k=−n−

log |a(ss)(σk(ω−))|
−

n+∑
k=0

log Φ(u)(σk(ω+))

n+∑
k=0

log |a(uu)(σk(ω+))|


= T̃ (s)(q) + T̃ (u)(q) + qα̃(q).

The lemma is proven. �

We proceed with the proof of the theorem. Consider the measure

λµq = ((µq ×m)(Yψ))−1(µq ×m)|Yψ
on Λ(A,ψ). Let νq be its push forward. It follows from (7.12) that

νq(Λα̃(q)+1) = 1. (7.13)

Similarly to the proof of Lemma 7.2 one can show that

dνq(x) = lim
r→0

log µq(Ci−n− ...in+ )

log r
+ 1.

Lemma 7.4 implies that

dνq(x) = T̃ (q) + qα̃(q) + 1 for all x ∈ Λα̃(q)+1. (7.14)

It follows that

fν(α̃(q) + 1) = dimHΛα̃(q)+1 = T̃ (q) + qα̃(q) + 1. (7.15)

(see [10]).

Recall that α̃(q) = −T̃ ′(q), T̃ ′ < 0 and T̃ ′′ > 0. Let us introduce the functions

α(q) = α̃(q) + 1 and T (q) = T̃ (q)− q + 1.

We have fν(α(q)) = T (q) + αq , where α(q) = −T ′(q). Therefore, the functions fν
and T form a Legendre transform pair (see Appendix). Clearly, the function T is
real analytic, T ′ < 0, and T ′′ > 0. Therefore, fν is also real analytic and f ′′ν < 0.
The function fν(α) is defined on an interval [α1, α2], where

α1 = − lim
q→+∞

T ′(q), α2 = − lim
q→−∞

T ′(q).
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Since PΣA(Φ) = 0, we have that T (s)(1) = T (u)(1) = 0, and ϕ(u)(ω) = ϕ(s)(ω) =

log Φ(ω) (see (7.8), (7.9)). Therefore, µ
(s)
1 = µ(s), and µ

(u)
1 = µ(u). It follows from

the definition of α̃ and (7.4) that

α̃(1) =

∫
ΣA

log Φ(ω) dµ∫
ΣA

log a(s)(ω) dµ
−
∫

ΣA
log Φ(ω) dµ∫

ΣA
log a(u)(ω) dµ

=

∫
ΣA

(∫ ψ(ω)

0

ϕ̃(ω, t) dt− cψ(ω)

)
dω

×

(
1∫

ΣA

∫ ψ(ω)

0
ã(s)dt dω

− 1∫
ΣA

∫ ψ(ω)

0
ã(u)dt dω

)

=

(
K8

∫
Λ(A,ψ)

ϕ(ω, t) dt− c

∫
ΣA

ψ(ω)

)
×

(
1

K8

∫
Λ(A,ψ)

ã(s)dt dω
− 1

K8

∫
Λ(A,ψ)

ã(u)dt dω

)

=

(∫
Λ

ϕ(x) dν − c

)
×
(

1∫
Λ
a(s)dν

− 1∫
Λ
a(u)dν

)
= hν(f

1)

(
1

λ+
ν

− 1

λ−ν

)
,

where K8 = (µ×m)(Yψ) and c = PΛ(A,ψ)(S, ϕ).
It follows from (5.3) that µ is equivalent to µ1, and hence ν is equivalent to ν1.

By (7.13) and (7.14), ν(Λα(1)) = 1. Moreover, dν(x) = α(1) for all x ∈ Λα(1). This
implies that

dν(x) = hν(f
1)

(
1

λ+
ν

− 1

λ−ν

)
+ 1

for ν-a.e. x ∈ Λ. This completes the proof of the first statement.

Let Ur(C
+
i0

) and Ur(C
−
i0

) be Moran covers of C+
i0

and C−i0 of size r. Then

Cr =
{

Ur(C
−
i0

)× Ur(C
+
i0

), i0 ∈ A
}

is a cover of ΣA. It is known that

T̃ (q) = − lim
r→0

log
∑

C∈Cr
(µ(C))q

log r
.

Let D̃r be the cover of Λ(A,ψ) which consists of the elements

D̃ = C × [kr, (k + 1)r), where C ∈ Cr, and 0 ≤ k <
maxω∈C ψ(ω)

r
.



30 YA. B. PESIN, V. SADOVSKAYA

We have that

− lim
r→0

log
∑

D∈D̃r
(λµ(D))q

log r
= T̃ (q)− q + 1 = T (q).

Consider the cover Dr = χ(D̃r) of Λ. By the construction there exist constants K9

and K10 independent of r such that any element of Dr contains a ball of radius K9r
and is contained in a ball of radius K10r.

For any D ∈ Dr consider a ball of radius K10r which contains D. Such balls
comprise a cover BK10r

of Λ. Since the measure ν is Federer,∑
D∈Dr

(ν(D))q ≥ K11

∑
B∈BK10r

(ν(B))q ,

where K11 is a constant independent of r.
Let BK9r

be a cover of Λ by balls of radius K9r. For each set D ∈ Dr there exists

a ball B ∈ BK9r
with the center inside D. Then the ball B̂ of radius 2K10r with the

same center contains D. Since ν is Federer,∑
D∈Dr

(ν(D))q ≤
∑
B̂

(ν(B̂))q ≤ K12

∑
B∈BK9r

(ν(B))q,

where K12 is a constant independent of r. Therefore,

T (q) = − lim
r→0

log infGr

∑
B∈Br

ν(B)q

log r

where the infimum is taken over all finite covers Br of Λ by open balls of radius
r. The last part of the third statement follows now directly from the definition of
HPq(ν) (see (A.8)) and the fact that HPq(ν) and Rq(ν) are equal (see Appendix).

If ν is the measure of full dimension, then both ν(u) and ν(s) are the measures of
full dimension. Using (7.10), (7.11) and Theorem 4.2 we conclude that

T (q) = T̃ (s)(q) + T̃ (u)(q)− q + 1 = (1− q) dimH Λ, and

dν(x) = t(s) + t(u) + 1 = dimH Λ for all x ∈ Λ.

Hence, fν(dimH Λ) = dimH Λ and fν(α) = 0 for α 6= dimH Λ. This completes the
proof of the theorem. �

Proof of Proposition 5.1. Recall that νmax is the unique equilibrium measure
on Λ(A,ψ) corresponding to the function ϕ̃ = 0. Therefore it is equal to λµ, where
µ is the unique equilibrium measure on ΣA corresponding to the Hölder continuous
function

Ψ(ω) = −cψ(ω),

where c = PΛ(A,ψ)(S, 0) = PΛ(F, 0) = PΛ(f 1, 0) = hΛ(f 1) (see (A.25), (A.26),
Proposition 8.5).
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Since PΣA(Ψ) = 0, Proposition 8.4 implies that for any ω = (. . . i0i1 . . . ) ∈ ΣA

the ratio
µ(Ci0...in)

exp
n∑
k=0

Ψ(σk(ω))

is bounded from above and from below by constants independent of ω and n.
Let Π is a rectangle, x ∈ Π ∩ L+

β , and Ci0 = χ−1(Π). Let µ(u) be the measure on

Σ+
A defined by (5.1), and ν

(u)
max be the push forward of µ(u) to W

(u)
loc (x,Π).

Let B(u)(x, r) be a ball in W
(u)
loc (x,Π). Let ω = (. . . i−1i0i1 . . . ) ∈ ΣA be such that

x = χ(ω). Repeating arguments in the proof of Lemma 7.2 one can show that

µ(u)(C+
i0...in(ω)

) ≤ ν(u)
max(B

(u)(x, r)) ≤ K13 µ
(u)(C+

i0...in(ω)
),

where n(ω) is defined by (6.3).

d
ν
(u)
max

(x) = lim
r→0

log ν
(u)
max(B(u)(x, r))

log r
= lim

r→0

log µ(u)(C+
i0...in(ω)

)

log r

= lim
r→0

n(ω)∑
k=0

Ψ(σkω)

log r
= lim

r→0

hΛ(f 1) t(x)∫ t(x)
0

a(u)(f τx) dτ

=
hΛ(f 1)

lim t→∞
1
t

∫ t
0
a(u)(f τx) dτ

=
hΛ(f 1)

β
,

where t(x) is defined by (6.1). This implies that d
ν
(u)
max

(x) = hΛ(f 1)/β if and only if

λ+(x) = lim
t→∞

1

t

∫ t

0

a(u)(f τx) dτ = β,

and the proposition follows. �

Proof of Theorem 5.3. We begin with the following observation. Let x1, x2 ∈ Λ.

If x2 = f t(x1) for some t ∈ R, or x2 ∈ W (s)
loc (x1), then λ+(x1) = λ+(x2).

For any x ∈ Λ we define the function

`
(u)
+ (x, β) = dimH { y ∈ W (u)

loc (x) ∩R(x) : λ+(y) = β },

where R(x) is a Markov set containing x. It follows from Lemma 7.1 that this
function does not depend on x, i.e. for any x1, x2 ∈ Λ

`
(u)
+ (x1, β) = `

(u)
+ (x2, β)

def
= `

(u)
+ (β).

Proposition 5.1 and the proof of Theorem 5.2 imply that

(1) If ν̃
(u)
max(x) is not equivalent to the measure η̃(u)(x) then `

(u)
+ (β) is a real

analytic strictly convex function on an interval [β1, β2].
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(2) If ν̃
(u)
max is equivalent to η̃(u)(x) then `

(u)
+ (β) is a delta function, i.e.,

`
(u)
+ (β) =

{
dimHW

(u)
loc (x), for β = hΛ(f 1)/ dimH(Λ ∩W (u)

loc (x))

0, for β 6= hΛ(f 1)/ dimH(Λ ∩W (u)
loc (x)).

If ν̃
(u)
max(x) is not equivalent to the measure η̃(u)(x), an argument similar to Remark

5.1 shows that d
ν̃
(u)
max(x)

(y) takes on the value dimH(W
(u)
loc (x) ∩ Λ) on a set of points

y ∈ W
(u)
loc (x) of positive Hausdorff dimension. Proposition 5.1 implies that λ+(y)

takes on the value hΛ(f 1)/ dimH(Λ ∩W (u)
loc (x)) on this set, and hence

β = hΛ(f 1)/ dimH(Λ ∩W (u)
loc (x)) ∈ (β1, β2).

Let Π be a rectangle, and x ∈ Π. Since

dimH { z ∈ W (u)
loc (x,Π) : λ+(z) = β }

= dimH { y ∈ W (u)
loc (x) ∩R(x) : λ+(y) = β } = `

(u)
+ (β), and

dimH(W
(s)
loc (x,Π)) = dimB(W

(s)
loc (x,Π))

= dimH(W
(s)
loc (x)) = dimB(W

(s)
loc (x)) = t(s)

(see Section 4), an argument similar to the proof of Theorem 4.2 shows that

`+(β) = `
(u)
+ (β) + t(s) + 1,

and the theorem follows. �

8. Appendix

1. Facts from dimension theory [5]. Let Z be a subset of the p-dimensional
Euclidean space Rp. The upper box dimension of Z is defined by

dimBZ = lim sup
ε→0

logN(Z, ε)

log(1/ε)
, (A.1)

where N(Z, ε) is the maximal cardinality of an ε-separated set in Z. The lower
box dimension of Z, dimBZ, is defined as the corresponding lower limit. Note
that one can use Ñ(Z, ε), the least number of balls of radius ε needed to cover Z,
instead of N(Z, ε) in the above definition.

Let α ≥ 0 a number. We define the α-Hausdorff measure of Z by

mH(Z, α) = lim
ε→0

inf
G

∑
U∈G

(diamU)α (A.2)

where the infimum is taken over all finite or countable coverings G of Z by open sets
with diamG ≤ ε. The Hausdorff dimension of Z (denoted dimH Z) is defined by

dimH Z = inf {α : mH(Z, α) = 0 } = sup {α : mH(Z, α) = ∞}. (A.3)
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It is known that dimH Z ≤ dimBZ ≤ dimBZ.
The following proposition allows to compute the Hausdorff dimension and box

dimensions of the Cartesian product of two sets.

Proposition 8.1. [5] Let U ⊂ Rp and V ⊂ Rq be two Borel sets.

(1) If dimH U = dimBU then dimH(U × V ) = dimH U + dimH V ,
(2) If dimH U = dimBU and dimH V = dimBV then dimB(U ×V ) = dimB(U ×

V ) = dimH(U × V ) = dimH U + dimH V.

Let µ be a finite Borel measure on Rp. Its Hausdorff dimension, dimHµ, is
defined by

dimH µ = inf { dimH Z : µ(Z) = 1 }. (A.4)

Let K ⊂ Rp be a compact subset and µ a finite Borel measure on K. The measure
µ is called a a measure of full dimension if dimH Z = dimH µ.

We now introduce the pointwise (local) dimension of µ at a point x ∈ Rp by

dµ(x) = lim
r→0

log µ(B(x, r))

log r
(A.5)

where B(x, r) is the ball of radius r centered at x.
If the above limit does not exist one can consider the lower and upper limits and

introduce respectively the lower and upper pointwise dimension of µ at x
which we denote by d(x) and d(x). The functions d(x) and d(x) are measurable.

The existence of the limit in (A.5) is an important problem in dimension theory
of dynamical systems. Measures for which this limit exists almost everywhere are
called exact dimensional. The following result was established by Young in [16].

Proposition 8.2. Let µ be a finite Borel measure on Rp. If dµ(x) = d for µ-almost
every x then dimH µ = d.

We consider the case when µ is an invariant measure for a dynamical system.

Proposition 8.3. [1] Let f be a C1+α diffeomorphism of a smooth compact Rie-
mannian manifold M , and µ an f -invariant ergodic Borel probability measure. As-
sume that µ is hyperbolic (i.e., all the Lyapunov exponents of f are non-zero at
µ-almost every point). Then µ is exact dimensional.

2. Dimension spectra [10]. We introduce the dimension spectrum of the mea-
sure µ which describes the distribution of values of pointwise dimension. Set

Xα = {x ∈ Rp : dµ(x) = α }.
The dimension spectrum for pointwise dimensions of the measure µ or fµ(α)-
spectrum (for dimensions) is defined by

fµ(α) = dimH Xα. (A.6)
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The straightforward calculation of the fµ(α)-spectrum is difficult and one can try
to relate it to another characteristics (spectra) of the invariant measure µ. Among
them is the Rényi spectrum for dimensions defined as follows: for q ≥ 0 set

Rq(µ) =
1

q − 1
lim
r→0

log
∑N

i=1 µ(Bi)
q

log r
, (A.7)

where Bi, i = 1, . . . , N = N(r) are boxes of a (uniform) grid of mesh size r (which
cover the support of µ) with µ(Bi) > 0 (provided the limit exists).

Another dimension spectrum is Hentschel–Procaccia spectrum for dimen-
sions. It is a one-parameter family of characteristics

HPq(µ) =
1

q − 1
lim
r→0

log infG

{∑
B(xi,r)∈G µ(B(xi, r))

q
}

log r
, (A.8)

where G is a finite or countable cover of the support of µ by balls of radius r and
q ≥ 0, q 6= 1 (provided the limit exists). One can show that for q > 1

HP q(µ) =
1

q − 1
lim
r→0

log
∫
µ(B(x, r))q−1 dµ(x)

log(1/r)
. (A.9)

Moreover, Rq(µ) = HP q(µ).

3. Facts from thermodynamic formalism [3], [4], [10], [9], [13]. Let X be a
compact metric space, f : X → X a continuous map, and ϕ a continuous function
on X (called the potential function). For every ε > 0 and n > 0 a set E ⊂ X is
called (ε, n)-separated if x, y ∈ E, x 6= y implies that ρ(fk(x), fk(y)) > ε for some
k ∈ [0, n]. Set

Zn(f, ϕ, ε) = sup

{∑
x∈E

exp
n−1∑
k=0

ϕ(fk(x))

}
where the supremum is taken over all (ε, n)-separated sets E ⊂ X. Set further

PX(f, ϕ, ε) = lim sup
n→∞

1

n
logZn(f, ϕ, ε),

PX(f, ϕ) = lim
ε→0

PX(f, ϕ, ε). (A.10)

We call PX(f, ϕ) the topological pressure of the function ϕ on X (with respect
to f).

The following result is a variational characterization of the topological pressure.
Let M(f) denote the space of all f -invariant Borel probability measures on X. Then

PX(f, ϕ) = sup
µ∈M(f)

(
hµ(f) +

∫
X

ϕdµ

)
(A.11)

where hµ(f) is the measure-theoretic entropy of µ.
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Measures that realize the variational principle for topological pressure play crucial
roles in ergodic theory. A measure µ ∈ M(f) is called an equilibrium measure
for the function ϕ if

PX(f, ϕ) = hµ(f) +

∫
X

ϕdµ. (A.12)

We also need the ”dimensional” definition of topological pressure for the case of
a symbolic dynamical system (ΣA, σ) (see [10]):

Let U(k) be the open cover of ΣA by cylinders Ci−k...ik . (Notice that diam U(k) → 0
as k →∞.) Let Z be a subset of ΣA, and α be a real number. Let

M(Z, α, ϕ,U(k), N) = inf
G̃

∑
C∈G̃

exp

(
−α(m+ 1) + sup

ω∈C

m∑
j=0

ϕ(σj(ω))

)
, (A.13)

where the infimum is taken over all finite or countable collections G of cylinders
C = Ci−k...ik+m with m ≥ N > k which cover Z. Define

mc(Z, α, ϕ,U
(k)) = lim

N→∞
M(Z, α, ϕ,U(k), N), (A.14)

PZ(ϕ,U(k)) = inf {α : mc(Z, α, ϕ,U
(k)) = 0 }

= sup {α : mc(Z, α, ϕ,U
(k)) = ∞},

P̃Z(f, ϕ) = lim
k→∞

PZ(U(k), ϕ). (A.15)

If Z is a compact invariant subset of ΣA then P̃Z(f, ϕ) = PZ(f, ϕ).

We now describe the thermodynamic formalism for dynamical systems with con-
tinuous time. Let F = {f t} : X → X be a continuous flow (i.e., a one-parameter
group of continuous maps on X which depend continuously on t) and ϕ a continuous
function on X. For every ε > 0 and t > 0 a set E ⊂ X is called (ε, t)-separated if
x, y ∈ E, x 6= y implies that ρ(f τ (x), f τ (y)) > ε for some τ ∈ [0, t]. Set

Zt(F, ϕ, ε) = sup

{∑
x∈E

exp

∫ t

0

ϕ(f τ (x)) dτ

}
(A.16)

where the supremum is taken over all (ε, t)-separated sets E ⊂ X. Define

PX(F, ϕ, ε) = lim sup
t→∞

1

t
logZt(F, ϕ, ε), (A.17)

PX(F, ϕ) = lim
ε→0

PX(F, ϕ, ε). (A.18)

We call PX(F, ϕ) the topological pressure of the function ϕ on X (with respect
to the flow F = {f t}). One can show that

PX(F, ϕ) = PX(f 1, ϕ1) (A.19)
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where f 1 is a time-one map and ϕ1 =
∫ 1

0
ϕ(f t(x)) dt. Moreover, one can express the

variational principle for the topological pressure in the case of flows as follows

PX(F, ϕ) = sup
µ∈M(F )

(
hµ(f

1) +

∫
X

ϕ1 dµ

)
, (A.20)

where M(F ) is the set of all F -invariant Borel probability measures on X. Note
that for any such measure µ

∫
ϕ1 dµ =

∫
ϕdµ.

A measure µ ∈ M(F ) is called an equilibrium measure for the function ϕ if

PX(F, ϕ) = hµ(f
1) +

∫
X

ϕ1 dµ = hµ(f
1) +

∫
X

ϕdµ. (A.21)

4. Symbolic dynamical systems [10], [3], [4], [9]. Given a p×p matrix A of 0s
and 1s (called transfer matrix), consider the subshift of finite type (ΣA, σ) where
ΣA is the space of two-sided infinite sequences of p symbols which are admissible
by the matrix A (a sequence ω = (ωi), i ∈ Z is admissible if aωi,ωi+1

= 1 for all
i ∈ Z) and σ is the shift map. The space ΣA has a natural family of metrics

dβ(ω, ω
′) =

∞∑
i=−∞

|ωi − ω′i|
β|i|

(A.22)

where β > 1. The set ΣA is compact with respect to the topology induced by dβ and
the shift map σ is a homeomorphism. If the matrix A is transitive (i.e., for every
0 ≤ i, j ≤ p there exists k > 0 such that the (i, j)-entry of the matrix Ak is strictly
positive) then the shift σ is topologically transitive (i.e., for every open sets U
and V there exists k > 0 such that σk(U) ∩ V 6= ∅). If the matrix A is irreducible
(i.e., there exists k > 0 such that Ak > 0) then the shift σ is topologically mixing
(i.e., for every open sets U and V there exists k > 0 such that σn(U) ∩ V 6= ∅ for
every n ≥ k).

Let ϕ be a Hölder continuous function on ΣA. The following statement describes
equilibrium measures for subshifts of finite type.

Proposition 8.4. Assume that the transfer matrix A is irreducible. Then

(1) there exists a unique equilibrium measure µ = µϕ which is mixing and is
positive on open sets;

(2) there exist constants D1, D2 > 0 such that for any ω = (ωi) and any m,n ≥ 0

D1 ≤
µ{ω′ : ω′i = ωi, i = −m, . . . , n}

exp
(
−(m+ n+ 1)PΣA(σ, ϕ) +

∑n
k=−m ϕ(σk(ω))

) ≤ D2. (A.23)

A measure µ on ΣA which satisfies (A.23) is called a Gibbs measure.

We describe a symbolic suspension flow over a subshift of finite type (ΣA, σ). Let
ψ be positive continuous function on ΣA and

Yψ = {(ω, s) : s ∈ [0, ψ(ω)], ω ∈ ΣA} ⊂ ΣA × R.
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If for every ω ∈ ΣA we identify the points (ω, ψ(ω)) and (σ(ω), 0) we obtain a
compact topological space Λ(A,ψ).

We define the symbolic suspension flow S = {St} on Λ(A,ψ) by

St(ω, s) = (ω, s+ t) if s+ t ∈ [0, ψ(ω)] (A.24)

taking identification into account.
There is a canonical identification between the spaces of invariant measures for

symbolic suspension flows and subshifts of finite type. Namely, for any measure
µ ∈ M(σ) and the Lebesgue measure m on R the measure µ×m has the property
that the identifications Yψ → Λ(A,ψ) are held on a set of measure zero. Therefore
the measure

λµ = ((µ×m)(Yψ))−1 (µ×m)|Yψ (A.25)

is a probability measure on Λ(A,ψ). Moreover, λµ ∈ M(S) and the map µ→ λµ is
one-to-one.

Let ϕ̃ be a continuous function on Λ(A,ψ). Set

Ψ0(ω) =

∫ ψ(ω)

0

ϕ̃(ω, t) dt, Ψ(ω) = Ψ0(ω)− cψ(ω) (A.26)

where c = PΛ(A,ψ)(S, ϕ̃) is the topological pressure of the function ϕ̃ on Λ(A,ψ) with
respect to the symbolic suspension flow S. PΣA(σ,Ψ) = 0, since PΛ(A,ψ)(S, ϕ̃) is the
unique real number c such that PΣA(σ,Ψ0 − cψ) = 0 (see [9]).

The following statement describes equilibrium measures for symbolic suspension
flows.

Proposition 8.5. Assume that the function Ψ(ω) is Hölder continuous on ΣA with
respect to the dβ-metric for some β > 1. Then

(1) there exists a unique equilibrium measure µϕ̃ for the function ϕ̃ for the sym-
bolic suspension flow S = {St}; the measure µϕ̃ is ergodic and positive on
open sets;

(2) µϕ̃ = λµΨ
where µΨ is a unique equilibrium measure for the function Ψ and

the measure λµΨ
is defined by (A.25).

5. Legendre Transform. We remind the reader of the notion of a Legendre
transform pair of functions. Let h be a C2-function on an interval I such that
h′′(x) > 0 for all x ∈ I. The Legendre transform of h is the differentiable function
g of a new variable p defined by

g(p) = min
x∈I

(px+ h(x)). (A.27)

One can show that:

(1) g′′ < 0;
(2) the Legendre transform is involutive;
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(3) strictly convex functions h and g form a Legendre transform pair if and only
if g(α) = h(q) + qα, where α(q) = −h′(q) and q = g′(α).

6. Cohomologous Functions [13]. Let X be a compact metric space, and f :
X → X a continuous map. Two functions ϕ1 and ϕ2 on X are called cohomologous
if there exists a Hölder continuous function g : X → R and a constant K such that

ϕ1 − ϕ2 = g − g ◦ f +K.

If the above equality holds withK = 0 the functions are called strictly cohomologous.
We recall some properties of cohomologous functions:

(1) the functions ϕ1 and ϕ2 are cohomologous if and only if equilibrium measures
of ϕ1 and ϕ2; on X coincide.

(2) if ϕ1 and ϕ2 are strictly cohomologous then PX(ϕ1) = PX(ϕ2).
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