
NORMAL FORMS FOR NON-UNIFORM CONTRACTIONS

BORIS KALININ∗ AND VICTORIA SADOVSKAYA∗∗

Abstract. Let f be a measure-preserving transformation of a Lebesgue space (X,µ)
and let F be its extension to a bundle E = X × Rm by smooth fiber maps Fx :
Ex → Efx so that the derivative of F at the zero section has negative Lyapunov
exponents. We construct a measurable system of smooth coordinate changes Hx on
Ex for µ-a.e. x so that the maps Px = Hfx ◦Fx ◦H−1

x are sub-resonance polynomials
in a finite dimensional Lie group. Our construction shows that such Hx and Px are
unique up to a sub-resonance polynomial. As a consequence, we obtain the centralizer
theorem that the coordinate change H also conjugates any commuting extension
to a polynomial extension of the same type. We apply our results to a measure-
preserving diffeomorphism f with a non-uniformly contracting invariant foliation W .
We construct a measurable system of smooth coordinate changes Hx : Wx → TxW
such that the maps Hfx ◦ f ◦ H−1

x are polynomials of sub-resonance type. Moreover,
we show that for almost every leaf the coordinate changes exist at each point on the
leaf and give a coherent atlas with transition maps in a finite dimensional Lie group.

1. Introduction

The theory of normal forms for smooth maps originated in the works of Poincare
and Sternberg [St57] and normal forms at fixed points and invariant manifolds have
been extensively studied [BKo]. More recently, non-stationary normal form theory was
developed in the context of a diffeomorphism f contracting a foliation W . The goal is
to obtain a family of diffeomorphisms Hx : Wx → TxW such that the maps

(1.1) f̃x = Hfx ◦ f ◦ H−1
x : TxW → TfxW

are as simple as possible, for example linear maps or polynomial maps in a finite
dimensional Lie group. Such a map f̃x is called a normal form of f on Wx.

The non-stationary normal form theory started with the linearization along one-
dimensional foliations obtained by Katok and Lewis [KtL91]. In a more general setting
of contractions with narrow band spectrum, it was developed by Guysinsky and Katok
[GKt98, G02], and a differential geometric point of view was presented by Feres [Fe04].
For the linearization, further results were obtained by the second author in [S05] and
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it was shown in [KS06] that the coordinates Hx give a consistent affine atlas on each
leaf of W . In [KS16] we extended these results to the general narrow band case. More
precisely, we gave a construction of Hx that depend smoothly on x along the leaves
and proved that they define an atlas with transition maps in a finite dimensional Lie
group. Non-stationary normal forms were used extensively in the study of rigidity of
uniformly hyperbolic dynamical systems and group actions, see for example [KtSp97,
KS03, KS06, F07, FFH10, GoKS11, FKSp11].

To obtain applications for non-uniformly hyperbolic systems and actions, one needs
a similar theory of non-stationary normal forms for non-uniform contractions. The
existence and centralizer theorems were stated without proof in [KKt01] along with a
program of potential applications. The theory, however, was not developed for quite
a while. The linearization of a C1+α diffeomorphism along a one-dimensional non-
uniformly contracting foliation was constructed in [KKt07] and used in the study of
measure rigidity in [KKt07, KKtR11]. Similar results for higher dimensional foliations
with pinched exponents were obtained by Katok and Rodriguez Hertz in [KtR15]. The
existence of Hx for a general contracting C∞ extension was proved by Li and Lu [LL05]
in the setting of random dynamical systems. Some results, such as existence of Taylor
polynomial or formal series for Hx, can be obtained for extensions more general than
contractions, see [AK92, A, LL05].

In this paper we develop the theory of non-stationary polynomial normal forms for
smooth extensions of measure preserving transformations by non-uniform contractions,
described in the beginning of Section 2. This is a convenient general setting for the
construction. The foliation setting reduces to it by locally identifying the leaf Wx with
its tangent space Ex = TxW and viewing Fx = f |Wx : Ex → Efx as an extension of the
base system f : M → M by smooth maps on the bundle E = TW . The base system
can then be viewed as just a measure preserving one. In the extension setting, the map
Hx is a coordinate change on Ex and we denote

Px = Hfx ◦ Fx ◦ H−1
x : Ex → Efx.

In Theorem 2.3 we construct coordinate changes Hx for µ almost every x so that Px is
a sub-resonance polynomial. For any regularity of F above the critical level, we obtain
H in the same regularity class.

Our construction allows us to describe the exact extent of non-uniqueness in Hx and
Px. Essentially, they are defined up to a sub-resonance polynomial. As a consequence
of this, we obtain the centralizer theorem that the coordinate change H also conjugates
any commuting extension to a normal form of the same type. We just learned of similar
results in differential geometric formulations by Melnick [M16]. The approach in [M16]
is different from ours and it relies on ergodic theorems for higher jets of Fx. Our
results assume only temperedness of the higher derivatives of Fx rather than certain
integrability required in [M16]. This allows us to obtain applications to the foliation
setting without any assumptions on transverse regularity of the foliation.
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In particular, we consider a diffeomorphism f which preserves an ergodic measure
with some negative Lyapunov exponents and take W to be any strong part of the stable
foliation. In this setting Theorem 2.5 gives sub-resonance normal forms for f along the
leaves of W . Moreover, we show that for almost every leaf the normal form coordinates
Hx exist at each point on the leaf and give a coherent atlas with transition maps in a
finite dimensional Lie group G determined by sub-resonance polynomials. This yields
an invariant structure of a G homogeneous space on almost every leaf.

We expect these results to be useful in the study of non-uniformly hyperbolic systems
and group actions.

We thank the referees for careful reading of the paper and useful suggestions.

2. Statements of results

Assumptions 2.1. In this paper,
(X,µ) is a Lebesgue probability space,
f : X → X is an invertible ergodic measure-preserving transformation of (X,µ),
E = X × Rm is a finite dimensional vector bundle over X,
V is a neighborhood of the zero section in E,
F : V → E is a measurable extension of f that preserves the zero section,
F : E → E is the derivative of F at zero section, Fx = D0Fx : Ex → Efx,
F and F−1 exist and satisfy log ‖Fx‖ ∈ L1(X,µ) and log ‖F−1

x ‖ ∈ L1(X,µ),
and the Lyapunov exponents of F are negative: χ1 < · · · < χ` < 0.

Sub-resonance polynomials. Let χ1 < · · · < χ` < 0 be the distinct Lyapunov
exponents of F and let Ex = E1

x ⊕ · · · ⊕ E `x be the splitting of Ex for x ∈ Λ into the
Lyapunov subspaces given by the Multiplicative Ergodic Theorem 3.1.

We say that a map between vector spaces is polynomial if each component is given
by a polynomial in some, and hence every, bases. We consider a polynomial map
P : Ex → Ey with P (0x) = 0y and split it into components (P1(t), . . . , P`(t)), where
Pi : Ex → E iy. Each Pi can be written uniquely as a linear combination of polynomials

of specific homogeneous types: we say that Q : Ex → E iy has homogeneous type s =

(s1, . . . , s`) if for any real numbers a1, . . . , a` and vectors tj ∈ E jx, j = 1, . . . , `, we have

(2.1) Q(a1t1 + · · ·+ a`t`) = as11 · · · a
s`
` ·Q(t1 + · · ·+ t`).

Definition 2.2. We say that a polynomial map P : Ex → Ey is sub-resonance if each
component Pi has only terms of homogeneous types s = (s1, . . . , s`) satisfying sub-
resonance relations

(2.2) χi ≤
∑

sjχj, where s1, . . . , s` are non-negative integers.

We denote by Sx,y the space of all sub-resonance polynomial maps from Ex to Ey.
Clearly, for any sub-resonance relation we have sj = 0 for j < i and

∑
sj ≤ χ1/χ`.

It follows that sub-resonance polynomial maps have degree at most

(2.3) d = d(χ) = bχ1/χ`c.
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Sub-resonance polynomial maps P : Ex → Ex with P (0) = 0 with invertible derivative
at the origin form a group with respect to composition [GKt98]. We will denote this
finite-dimensional Lie group by Gχ

x . All groups Gχ
x are isomorphic, moreover, any map

P ∈ Sx,y with P (0x) = 0y and invertible derivative at 0x induces an isomorphism
between Gχ

x and Gχ
y by conjugation.

We denote by Bx,σ(x) the closed ball of radius σ(x) centered at 0 ∈ Ex. For N ≥ 1
and 0 < α ≤ 1 we denote by CN,α(Bx,σ(x)) = CN,α(Bx,σ(x), Ex) the space of functions
from Bx,σ(x) to Ex with continuous derivatives up to order N ≥ 1 on Bx,σ(x) and with
N th derivative satisfying α-Hölder condition at 0:

(2.4) ‖D(N)R‖α = sup { ‖D(N)
t R−D(N)

0 R‖ · ‖t‖−α : 0 6= t ∈ Bx,σ(x)} <∞.

We call ‖D(N)R‖α the α-Hölder constant ofD(N)R at 0. We equip the space CN,α(Bx,σ(x))
with the norm

(2.5) ‖R‖CN,α(B x,σ(x)) = max { ‖R‖0, ‖D(1)R‖0, ..., ‖D(N)R‖0, ‖D(N)R‖α },

where ‖D(k)R‖0 = sup {‖D(k)
t R‖ : t ∈ Bx,σ(x)}.

We say that a non-negative real-valued function K on X is ε-tempered at x if

(2.6) sup {K(fnx) e−εn : n ∈ N} <∞,
and that K is ε-tempered on a set if it is ε-tempered at each of its points.

We consider an extension F satisfying the Assumptions 2.1 and denote by Λ the set
of regular points and by χ1 < · · · < χ` < 0 the Lyapunov exponents of F given by the
Multiplicative Ergodic Theorem 3.1. For N and α as above we define

(2.7) κ = 1 + 3/α if N = 1 and κ = 4 if N ≥ 2.

If N ≥ 2 we allow α = 0, in which case we understand CN,α as CN .

Theorem 2.3 (Normal forms for non-uniformly contracting extensions).
Let F be an extension of f satisfying Assumptions 2.1. Suppose that

(2.8) N ≥ 1, 0 ≤ α ≤ 1 and N + α > χ1/χ`.

Then there exist positive constants L = L(N,α) and ε∗ = ε∗(N,α, χ1, ..., χ`) so that
for any 0 < ε ≤ ε∗ the following holds.

If there exists a positive measurable function σ : Λ → R so that 1/σ is ε-tempered
on Λ and Fx is CN,α(Bx,σ(x)) for all x ∈ Λ with the derivatives measurable in x and
with ‖Fx‖CN,α ε-tempered on Λ then

(1) There exists a positive measurable function ρ : Λ → R so that 1/ρ is κε-tempered
on Λ and a measurable family {Hx}x∈Λ of CN,α diffeomorphisms Hx : Bx,ρ(x) → Ex
satisfying Hx(0) = 0 and D0Hx = Id which conjugate F to a sub-resonance polynomial
extension P:

Hfx ◦ Fx = Px ◦ Hx, where Px ∈ Sx,fx for all x ∈ Λ.
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Moreover, ‖Hx‖CN,α(B x,ρ(x)) is Lε-tempered on Λ and ‖D(n)
0 Hx‖ is n2ε-tempered on Λ

for n = 1, ..., N , with respect to the ε-Lyapunov metric (3.2).

(2) Suppose H̃ = {H̃x}x∈Λ is another measurable family of diffeomorphisms as in (1)
conjugating F to a sub-resonance polynomial extension P̃. Then for all x ∈ Λ there
exists Gx ∈ Gχ

x which is measurable and tempered in x such that Hx = Gx ◦ H̃x.

Moreover, if D
(n)
0 H̃x = D

(n)
0 Hx for all n = 2, ..., d = bχ1/χ`c, then Hx = H̃x for all

x ∈ Λ. In particular, {Hx}x∈Λ is unique if d = 1.

(3) Let g : X → X be an invertible map commuting with f and let Λ′ be a subset
of Λ which is both f and g invariant. Let G(x, t) = (g(x),Gx(t)) be an extension of
g to E which preserves the zero section and commutes with F . Suppose that Gx is
CN,α(Bx,σ(x)) for all x ∈ Λ′ with the derivatives measurable in x, and that ‖Gx‖CN,α
and ‖(D0Gx)−1‖ are ε-tempered on Λ′. Then Hgx ◦ Gx ◦ H−1

x ∈ Sx,fx for all x ∈ Λ′.

Corollary 2.4. Suppose that Fx is C∞(Bx,σ(x)) and that 1/σ and ‖Fx‖CN for each
N ∈ N are ε-tempered on Λ for each ε > 0. Then Hx in part (1) of Theorem 2.3 is
C∞(Bx,ρ(x)).

Normal forms on stable manifolds. Let M be a compact smooth manifold and let
f be a diffeomorphism of M preserving an ergodic Borel probability measure µ. We
assume that f is CN,α, that is CN with N th derivative α-Hölder on M. We denote by
Λ the full measure set of Lyapunov regular points for (Df, µ). Let χ1 < · · · < χ`′ be
the Lyapunov exponents of (Df, µ) and suppose ` is such that χ` < 0. Then for each
x ∈ Λ there exists the (strong) stable manifold Wx tangent to Ex = E1

x ⊕ ...⊕E `x [R79,
Theorem 6.1].

Theorem 2.5 (Normal forms on stable manifolds). Let M be a compact smooth man-
ifold and let f be a CN,α diffeomorphism of M preserving an ergodic Borel probability
measure µ. Suppose that N ≥ 1, 0 ≤ α ≤ 1 and N + α > χ1/χ`. Then there exist a
full measure set X which consists of full stable manifolds Wx and a measurable family
{Hx}x∈X of CN,α diffeomorphisms

Hx : Wx → Ex = TxWx such that

(i) Px = Hfx◦f ◦H−1
x : Ex → Efx is a sub-resonance polynomial map for each x ∈ X,

(ii) Hx(x) = 0 and DxHx is the identity map for each x ∈ X,

(iii) ‖Hx‖CN,α is tempered on X,

(iv) Hy ◦H−1
x : Ex → Ey is a sub-resonance polynomial map for all x ∈ X and y ∈ Wx,

(v) If g : M → M is a CN,α diffeomorphism commuting with f which preserves the
measure class of µ then Hgx ◦ g ◦ H−1

x : Ex → Egx is a sub-resonance polynomial map
for all x in a full measure set X ′ which consists of full stable manifolds.

Another way to interpret (iv) is to view Hx as a coordinate chart on Wx identifying
it with Ex. In this coordinate chart, (iv) yields that all transition maps Hy ◦ H−1

x for
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y ∈ Wx are in the group Ḡχ
x generated by Gχ

x and the translations of Ex. Thus Hx

gives the leaf a structure of homogeneous space Wx ∼ Ḡχ
x/G

χ
x , which is consistent with

other coordinate charts Hy for y ∈ Wx and is preserved by the normal form Px by (i).

Corollary 2.6. Under the assumptions of the Theorem 2.5, if d = bχ1/χ`c = 1, i.e.
2χ` < χ1, then Px is the linear map Df |Ex, the family {Hx}x∈X satisfying (ii) and (iii)
is unique, the maps Hy ◦ H−1

x : Ex → Ey are affine for all x ∈ X and y ∈ Wx, and Hy

depends CN -smoothly on y along the stable manifolds.

3. Lyapunov exponents and Lyapunov norm

In this section we review some basic definitions and facts of the Oseledets theory of
linear extensions. We use [BP] as a general reference. For a linear extension F of a
map f we will use the notation

(3.1) F n
x = Ffn−1x ◦ · · · ◦ Ffx ◦ Fx.

Theorem 3.1 (Oseledets Multiplicative Ergodic Theorem, see [BP] Theorem 3.4.3).
Let f be an invertible ergodic measure-preserving transformation of a Lebesgue probabil-
ity space (X,µ). Let F be a measurable linear extension satisfying log ‖Fx‖ ∈ L1(X,µ)
and log ‖F−1

x ‖ ∈ L1(X,µ). Then there exist numbers χ1 < · · · < χ`, an f -invariant set
Λ with µ(Λ) = 1, and an F -invariant Lyapunov decomposition

Ex = E1
x ⊕ · · · ⊕ E `x for x ∈ Λ

such that

(i) lim
n→±∞

n−1 log ‖F n
x v‖ = χi for any i = 1, . . . , ` and any 0 6= v ∈ E ix, and

(ii) lim
n→±∞

n−1 log | detF n
x | =

∑`
i=1miχi, where mi = dim E ix.

The numbers χ1, . . . , χ` are called the Lyapunov exponents of F and the points of the
set Λ are called regular.

We denote the standard scalar product in Rm by 〈·, ·〉. For a fixed ε > 0 and a regular
point x, the ε-Lyapunov scalar product (or metric) 〈·, ·〉x,ε in Ex = Rm is defined as
follows. For u ∈ E ix and v ∈ E jx with i 6= j, 〈u, v〉x,ε := 0, and for i = 1, . . . , ` and
u, v ∈ E ix,

(3.2) 〈u, v〉x,ε = m
∑
n∈Z

〈F n
x (u), F n

x (v)〉 exp(−2χin− ε|n|).

Note that the series converges exponentially for any regular x. The constant m in
front of the conventional formula is introduced for more convenient comparison with
the standard scalar product. Usually, ε will be fixed and we will denote 〈·, ·〉x,ε simply
by 〈·, ·〉x and call it the Lyapunov scalar product. The norm generated by this scalar
product is called the Lyapunov norm and is denoted by ‖ · ‖x,ε or ‖ · ‖x.
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Below we summarize the basic properties of the Lyapunov scalar product and norm,
for more details see [BP, Sections 3.5.1-3.5.3]. A direct calculation shows [BP, Theorem
3.5.5] that for any regular x and any u ∈ E ix

(3.3) exp(nχi − ε|n|) ‖u‖x,ε ≤ ‖F n
x (u)‖fnx,ε ≤ exp(nχi + ε|n|) ‖u‖x,ε for all n ∈ Z,

(3.4) exp(nχ` − εn) ≤ ‖F n
x ‖fnx←x ≤ exp(nχ` + εn) for all n ∈ N,

where ‖·‖fnx←x is the operator norm with respect to the Lyapunov norms. It is defined
for any points x, y ∈ Λ and any linear map F : Ex → Ey as follows

‖F‖y←x = sup {‖Fu‖y,ε : u ∈ Ex, ‖u‖x,ε = 1}.

We emphasize that Lyapunov scalar product and norm are defined only for regular
points and depend measurably on the point. Thus, a comparison with the stan-
dard norm is important. The uniform lower bound follows easily from the definition:
‖u‖x,ε ≥ ‖u‖. The upper bound is not uniform, but it changes slowly along the regular
orbits [BP, Proposition 3.5.8]: there exists a measurable function Kε(x) defined on Λ
such that

(3.5) ‖u‖ ≤ ‖u‖x,ε ≤ Kε(x) · ‖u‖ for all x ∈ Λ and u ∈ Ex, where Kε(x) ≥ 1,

and

(3.6) Kε(x)e−ε|n| ≤ Kε(f
nx) ≤ Kε(x)eε|n| for all x ∈ Λ and n ∈ Z.

Using (3.5) we obtain that for any point x, y ∈ Λ and any linear map F : Ex → Ey

(3.7) Kε(x)−1 · ‖F‖ ≤ ‖F‖y←x ≤ Kε(y) · ‖F‖ .

When ε is fixed we will usually omit it and write K(x) = Kε(x) and ‖u‖x = ‖u‖x,ε.
Similarly, we will consider the Lyapunov norm of a homogeneous polynomial map

R : Ex → Ey of degree n defined as

(3.8) ‖R‖y←x = sup { ‖R(u)‖y,ε : u ∈ Ex, ‖u‖x,ε = 1 }.

It follows that

(3.9) ‖R ◦ P ‖ ≤ ‖R‖ · ‖P‖n.

For a homogeneous polynomial map R : Ex → Ey of degree n we have

(3.10) Kε(x)n · ‖R‖ ≤ ‖R‖y←x ≤ Kε(y) · ‖R‖.

This formula allows us to switch between the standard and Lyapunov norms in spaces
of polynomials and smooth functions.
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4. Proof of Theorem 2.3

We note that (2.8) implies N ≥ d. We give the proof for the case α > 0. The proof
for α = 0, and hence N ≥ 2, is similar but avoids difficulties of estimating the Hölder
constant at 0. We will use notation Fnx = Ffn−1x ◦ · · · ◦ Ffx ◦ Fx.

Now we define constants that will be used throughout the proof. We set

(4.1) L ≥ L(N,α) = max {κ,N3 + 3N2 + 1}, where κ is given by (2.7).

We define λ < 0 as the largest value of −χi +
∑`

j=1 sjχj over all i ∈ {1, . . . , `} and

non-negative integers s1, . . . , s` such that sub-resonance condition (2.2) is not satisfied:

(4.2) λ = max {−χi +
∑

sjχj < 0 }.

The maximum exists since there are only finitely many values of −χi +
∑
sjχj greater

than any given number. Next we recall that N + α > χ1/χ` and set

(4.3) ν = χ1 − (N + α)χ` > 0.

The proof of part (1) of Theorem 2.3 works for any L ≥ L(N,α) and any ε < ε0, where

(4.4) ε0 = min { ν/(2L+ 4(N + 1 + α)), −χ`/(2NL+ 3), −λ/(N2 +N + 1) } > 0.

For parts (2) and (3) of Theorem 2.3 we will use smaller bounds on ε: ε1 = ε0/(N + 1)
and ε∗ = ε0/3(N + 1) respectively.

We fix L ≥ L(N,α) and 0 < ε < ε0, and let K = Kε be as in (3.5). Since ‖Fx‖CN,α
is ε-tempered, there is a function C : Λ→ [1,∞) such that for all x ∈ Λ and n ∈ N
(4.5) ‖Fx‖CN,α ≤ C(x) and C(fnx) ≤ enεC(x).

Similarly, replacing σ by a smaller function if necessary, we can assume that it satisfies

(4.6) σ : Λ→ (0, 1] and σ(fnx) ≥ e−nεσ(x).

Lemma 4.1. Under the assumptions of Theorem 2.3, there exists a function ρ : Λ→
(0, 1] so that for all x ∈ Λ, n ∈ N, and t ∈ Bx,ρ(x) ⊂ Ex, we have ρ(x) < σ(x) ≤ 1 and

(1) ρ(fnx) ≥ e−κεnρ(x), where κ is given by (2.7),

(2) ‖DtFnx ‖fnx←x ≤ e(χ`+2ε)n,

(3) ‖DtFnx ‖ ≤ K(x) e(χ`+2ε)n ,

(4) ‖Fnx (t)‖ ≤ K(x) e(χ`+2ε)n‖t‖,
(5) ‖Fnx (t)‖fnx ≤ e(χ`+2ε)n‖t‖x.

Proof. We take β = 1 if N ≥ 2 and β = α > 0 if N = 1. For each x ∈ Λ we define

(4.7) ρ(x) = σ(x)[ε eχ`(C(x)K(x)2)−1]1/β.

Then (1) follows from (4.5), (4.6), and (3.6); (5) follows from (2) by the mean value
theorem since Fnx (0) = 0. We prove (2), (3), and (4) by induction. The statements are
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clear for n = 0, suppose they hold for n. Note that (2) implies (3) by (3.7), and (3)
implies (4). We observe that

‖DtFn+1
x ‖fn+1x←x ≤ ‖Dt′ Ffnx‖fn+1x←fnx · ‖DtFfnx‖fnx←x, where t′ = Fnx (t).

Then (2) follows from the inductive assumption and

(4.8) ‖DtFfnx‖fn+1x←fnx ≤ eχ`+2ε.

To prove (4.8) we denote ∆ = Dt′ Ffnx − D0Ffnx. By the choice of β and (4.5), the
β-Hölder constant of DsFfnx at 0 is at most C(fnx), so using (3.7) we obtain

‖∆‖fn+1x←fnx ≤ K(fn+1x)‖∆‖ ≤ K(fn+1x)C(fnx)‖t′‖β,
and using (4.5), (3.6) and the inductive assumption (4) we get that this is at most

K(x)C(x) e(2n+1)εK(x)β eβ(χ`+2ε)n ‖t‖β ≤ eεC(x)K(x)2 e[2ε+β(χ`+2ε)]n ‖t‖β.
Since ‖t‖ ≤ ρ(x) and βχ` + 2(1 + β)ε ≤ 0 we obtain

‖∆‖fn+1x←fnx ≤ eεC(x)K(x)2 ρ(x)β ≤ ε eχ`+εσ(x)β ≤ ε eχ`+ε.

Since
D0Ffnx = Ffnx and ‖Ffnx‖fn+1x←fnx ≤ eχ`+ε

by (3.4), we conclude that

‖Dt′ Ffnx‖fn+1x←fnx ≤ ‖∆‖fn+1x←fnx + ‖Ffnx‖fn+1x←fnx ≤ ε eχ`+ε + eχ`+ε ≤ eχ`+2ε.

�

4.1. Construction of P and of the Taylor polynomial for H.
For each x ∈ Λ and map Fx : Ex → Efx we consider the Taylor polynomial at t = 0:

(4.9) Fx(t) ∼
N∑
n=1

F (n)
x (t).

As a function of t, F
(n)
x (t) : Ex → Efx is a homogeneous polynomial map of degree n.

First we construct the Taylor polynomials at t = 0 for the desired coordinate change
Hx(t) and the polynomial extension Px(t). We use similar notations for these Taylor
polynomials:

Hx(t) ∼
N∑
n=1

H(n)
x (t) and Px(t) =

d∑
n=1

P (n)
x (t).

For the first derivative we choose

H(1)
x = Id : Ex → Ex and P (1)

x = Fx for all x ∈ Λ.

We will inductively construct the terms H
(n)
x and P

(n)
x for all in x ∈ Λ so that P

(n)
x

is of sub-resonance type and they are measurable in x and n2ε-tempered, i.e.

(4.10) sup
k∈N

e−n
2εk ‖H(n)

fkx
‖fkx←fkx <∞ and sup

k∈N
e−n

2εk ‖P (n)

fkx
‖fk+1x←fkx <∞.
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The base of the induction is the linear terms chosen above. Now we assume that
the terms of order less than n are constructed. Using these notations in the conjugacy
equation Hfx ◦ Fx = Px ◦ Hx we write(

Id +
N∑
i=2

H
(i)
fx

)
◦

(
Fx +

N∑
i=2

F (i)
x

)
∼

(
Fx +

d∑
i=2

P (i)
x

)
◦

(
Id +

N∑
i=2

H(i)
x

)
.

and considering the terms of degree N ≥ n ≥ 2, we obtain

F (n)
x + H

(n)
fx ◦ F (x) +

∑
H

(i)
fx ◦ F

(j)
x = Fx ◦H(n)

x + P (n)
x +

∑
P (j)
x ◦H(i)

x ,

where the summations are over all i and j such that ij = n and 1 < i, j < n. We
rewrite the equation as

(4.11) F−1
x ◦ P (n)

x = −H(n)
x + F−1

x ◦H
(n)
fx ◦ Fx +Qx,

where

(4.12) Qx = F−1
x

(
F (n)
x +

∑
ij=n, 1<i,j<n

H
(i)
fx ◦ F

(j)
x − P (j)

x ◦H(i)
x

)
.

We note that Qx is composed only of terms H(i) and P (i) with 1 < i < n, which are
already constructed, and terms F (i) with 1 < i ≤ n, which are given. Thus by the
inductive assumption Qx is defined for all x ∈ Λ and measurable. We will show later
that they are also suitably tempered in x.

Let R(n)
x be the space of all homogeneous polynomial maps on Ex of degree n, and let

S(n)
x and N (n)

x be the subspaces of sub-resonance and non sub-resonance polynomials

respectively. We seek H
(n)
x so that the right side of (4.11) is in S(n)

x , and hence so is

P
(n)
x when defined by this equation.
Projecting (4.11) to the factor bundle R(n)/S(n), our goal is to solve the equation

(4.13) 0 = −H̄(n)
x + F−1

x ◦ H̄
(n)
fx ◦ Fx + Q̄x,

where H̄(n) and Q̄ are the projections of H(n) and Q respectively.
We consider the bundle automorphism Φ : R(n) → R(n) covering f−1 : M → M

given by the maps Φx : R(n)
fx → R

(n)
x

(4.14) Φx(R) = F−1
x ◦R ◦ Fx.

Since F preserves the splitting E = E1⊕· · ·⊕E `, it follows from the definition that the
sub-bundles S(n) and N (n) are Φ-invariant. We denote by Φ̄ the induced automorphism
of R(n)/S(n) and conclude that (4.13) is equivalent to

(4.15) H̄(n)
x = Φ̃x(H̄

(n)
fx ), where Φ̃x(R) = Φ̄x(R) + Q̄x.

Thus a solution of (4.13) is a Φ̃-invariant section of R(n)/S(n). We will show that Φ̃
is a nonuniform contraction and that it has a unique measurable tempered invariant
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section. First, for polynomials of specific homogeneous type the exponent of Φ is
determined by the exponents of F as follows.

Lemma 4.2. For a polynomial R : Efx → E ifx of homogeneous type s = (s1, . . . , s`)
with s1 + · · ·+ s` = n,

(4.16) ‖Φx(R)‖x←x ≤ e−χi+
∑
sjχj+(n+1)ε · ‖R‖fx←fx.

Proof. Suppose that v = v1 + · · · + v`, where vj ∈ E jx, and ‖v‖x = 1. We denote

aj = ‖F |Ejx‖fx←x and observe that Fx(vj) = ajv
′
j ∈ E

j
fx with ‖v′j‖fx ≤ ‖vj‖x. Since R

has homogeneous type s = (s1, . . . , s`) we obtain by (2.1) that

(4.17) (R ◦ Fx)(v) = R(a1v
′
1 + · · ·+ a`v

′
`) = as11 · · · a

s`
` ·R(v′1 + · · ·+ v′`).

where v′ = v′1 + · · ·+ v′` has ‖v′‖fx ≤ ‖v‖x = 1 by orthogonality of the splitting in the
Lyapunov metric. Thus

‖(R ◦ Fx)(v)‖fx = as11 · · · a
s`
` · ‖R(v′)‖fx ≤ as11 · · · a

s`
` · ‖R‖fx←fx

for any v ∈ Ex with ‖v‖x = 1, so we obtain ‖R ◦ Fx‖x←fx ≤ as11 · · · a
s`
` · ‖R‖fx←fx by

definition (3.8). Now (3.9) yields

‖Φx(R)‖x←x = ‖F |−1
Eix
◦R ◦ Fx‖x←x ≤ ‖F |−1

Eix
‖x←fx · ‖R ◦ Fx‖x←fx ≤

≤ ‖F |−1
Eix
‖x←fx · as11 · · · a

s`
` · ‖R‖fx←fx ≤ e−χi+ε ·

∏
j

(eχj+ε)sj · ‖R‖fx←fx.

Since aj = ‖F |Ejx‖fx←x ≤ eχj+ε and ‖F |−1
Eix
‖x←fx ≤ e−χi+ε by (3.3). �

Remark 4.3. Similarly, one can show that ‖Φ−1
x (R)‖fx←fx ≤ eχi−

∑
sjχj+(n+1)ε‖R‖x←x.

Since this holds for any ε > 0, using (3.10) to compare the Lyapunov and standard
norms, one can conclude that the Lyapunov exponent of Φ on R is

lim
k→±∞

k−1 log ‖Φk(R)‖ = −χi +
∑

sjχj.

For all non sub-resonance homogeneous types we have −χi +
∑
sjχj ≤ λ by the

definition (4.2) of λ. Thus Lemma 4.2 yields the following lemma.

Lemma 4.4. The map Φ : N (n) → N (n) given by (4.14) is a nonuniform contraction
over f−1, and hence so is Φ̃ : R(n)/S(n) → R(n)/S(n) given by (4.15). More precisely,
‖Φx(R)‖x←x ≤ eλ+(n+1)ε · ‖R‖fx←fx.

Proof. The statement about Φ̃ follows since the linear part Φ̄ of Φ̃ is given by Φ when
R(n)/S(n) is naturally identified with N (n). By the choice of ε, λ+ (n+ 1)ε < 0. �

It follows from the previous remark that λ is the maximal Lyapunov exponent of
Φ over f−1 on the space of non sub-resonant polynomials, and that all Lyapunov
exponents of Φ|S(n) are non-negative.
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Now we construct a Φ̃-invariant measurable section of the bundle B = R(n)/S(n) and
study its properties. The construction is orbit-wise. We fix a point x ∈ Λ, consider its
positive orbit {xk = fkx : k ≥ 0}, and define the Banach space

Bx = {R = (Rk)
∞
k=0 : Rk ∈ Bxk , ‖R‖ <∞}, where ‖R‖ = sup

k≥0
e−εn

2k‖Rk‖xk←xk

and ‖Rk‖xk←xk is the norm induced on Bxk by the Lyapunov norm ‖.‖xk on Ex. We

denote Q̃ = (Q̄xk)
∞
k=0 and claim that it is in Bx. For this we need to estimate the

growth of the Lyapunov norm of (4.12) along the trajectory:

(4.18)

‖Qxk‖xk←xk ≤ ‖F−1
xk
‖xk←xk+1

· ( ‖F (n)
xk
‖xk+1←xk+∑

ij=n, 2≤i,j≤n/2

‖H(i)
xk+1
‖xk+1←xk+1

‖F (j)
xk
‖ixk+1←xk + ‖P (j)

xk
‖xk+1←xk‖H(i)

xk
‖jxk←xk ).

First, ‖F−1
xk
‖xk←xk+1

≤ e−χ`+ε for all x and k by (3.4). The exponential growth rate in

k of ‖F (n)
xk ‖xk+1←xk is at most 2ε. Indeed, using (3.10) and (3.6) we can obtain from

(4.5) the corresponding estimate for CN,α norm with respect to the Lyapunov metric
on Exk :

(4.19) ‖Fxk‖CN,α,xk ≤ K(fxk)‖Fxk‖CN,α ≤ K(xk+1)C(xk) ≤ e(2k+1)εK(x)C(x).

Then using the inductive assumption (4.10) for the terms of order i, j < n, we can
estimate the exponential growth rate of the two terms in the sum respectively as
(i2 + 2i)ε and (j2 + i2j)ε, which are at most ((n/2)2 + in)ε < n2ε. So the exponential
growth rate of ‖Qxk‖xk←xk can be estimated by n2ε and thus ‖Q̃‖ <∞.

Then Φ̃x induces an operator on Bx by (Φ̃x(R))k = Φ̄xk(Rk+1) + Q̃k and we have

‖Φ̃x(R)− Φ̃x(R′)‖ = sup
k≥0

e−εn
2k ‖ Φ̄xk(Rk+1 −R′k+1) ‖xk←xk ≤

≤ sup
k≥0

e−εn
2keλ+(n+1)ε ‖Rk+1 −R′k+1‖xk+1←xk+1

≤

≤ eλ+(n2+n+1)ε ·
(

sup
k≥0

e−εn
2(k+1) ‖(Rk+1 −R′k+1)‖xk+1←xk+1

)
≤ eλ+(n2+n+1)ε ‖R−R′‖.

Since λ+ (n2 + n+ 1)ε < 0 by the choice of ε (4.4), Φ̃x is a contraction and thus has a

unique fixed point Rx ∈ Bx. We claim that H̄
(n)
x = Rx

0 is a measurable function which
is a unique solution of (4.15) or equivalently (4.13). Measurability follows from the
fact that the fixed point can be explicitly written as a series

(4.20) H̄(n)
x =

∞∑
k=0

(F k
x )−1 ◦ Q̄xk ◦ F k

x .

Invariance is clear since (Rx
k+1)∞k=0 is a fixed point of Φ̃fx which coincides with (Rfx

k )∞k=0

by uniqueness and thus Rx
1 = Rfx

0 . More generally, H̄
(n)
xk = Rxk

0 = Rx
k, and since
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Rx ∈ Bx, the exponential growth rate of ‖H̄(n)
xk ‖xk←xk is at most n2ε. Now we can

choose H
(n)
x as a lift of H̄

(n)
x to R(n)

x which is measurable in x and satisfies (4.10). Then

we define P
(n)
x by equation (4.11). It also satisfies (4.10) as so do H and Q and as

‖Fx‖x←fx and ‖F−1
x ‖fx←x are uniformly bounded. This completes the inductive step

and the construction of H(n) and P (n), n = 1, . . . , N , satisfying (4.10).

Thus we have constructed the N -th Taylor polynomial for the coordinate change

(4.21) HN
x (t) =

N∑
n=1

H(n)
x (t) of degree N ≥ d = bχ1/χ`c

and the polynomial map Px(t) =
∑d

n=1 P
(n)
x (t).

4.2. Construction of the coordinate change H.

We rewrite the conjugacy equation Hfx ◦ Fx = Px ◦ Hx in the form

(4.22) Hx = P−1
x ◦ Hfx ◦ Fx.

A solution H = {Hx} of this equation is a fixed point of the operator T given by

(4.23) T (H)x = P−1
x ◦ Hfx ◦ Fx.

We will find H in the form H = HN +R, where HN is given by (4.21). We denote

(4.24) R = H−HN and T̃ (R) = T (HN +R)−HN

and observe that T (H) = H if and only if T̃ (R) = R. We will find Rx using the fixed
point of a contraction T̃ x induced by T̃ on a certain space Cx of sequences of functions
along the orbit of x. Now we define the space Cx.

By the construction of HN and P , HN and T (HN) have the same derivatives at
the zero section up to order N , so we consider functions with vanishing derivatives
at the zero section up to order N . First we describe the space of functions at each
regular point x. For any x ∈ Λ we denote by Bx,r the ball centered at 0 in Ex of radius
r < ρ(x) < 1 in the Lyapunov norm ‖.‖x. We define

Cx,r = {R ∈ CN,α(Bx,r, Ex) : D
(k)
0 R = 0, k = 0, ..., N}.

Throughout this section we use the CN,α norms with respect to the Lyapunov metric
on Ex. They are estimated through the norms for the standard metric (2.5) in (4.19).
In particular, we use the α-Hölder constant (2.4) of D(N)R at 0 with respect to the
Lyapunov metric, which for any R ∈ Cx,r is given by

(4.25) ‖D(N)R‖x,α = sup {‖D(N)
t R‖x←x · ‖t‖−αx : 0 6= t ∈ Bx,r}.

For any R ∈ Cx,r lower derivatives can be estimated by the mean value theorem as

(4.26) ‖D(n)
t R‖x←x ≤ ‖t‖N−nx · sup {‖D(N)

s R‖x←x : ‖s‖x ≤ ‖t‖x},
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so using the above Hölder constant we obtain that for any 0 ≤ n < N and t ∈ Bx,r,

(4.27) ‖D(n)
t R‖x←x ≤ ‖t‖1+α

x · ‖D(N)R‖x,α.
Thus the norms of all derivatives are dominated by the Hölder constant and hence

(4.28) ‖R‖CN,α(Bx,r) = ‖D(N)R‖x,α.

It follows that Cx,r equipped with the norm ‖D(N)R‖x,α is a Banach space.
We will choose a small r = r(x) < ρ(x) satisfying (4.40) and set

(4.29) rk = re−2NLkε,

where L is given by (4.1). We define Cx as the following Banach space of sequences of
functions along the orbit xk = fkx.

(4.30) Cx = {R̄ = (Rk)
∞
k=0 : Rk ∈ Cxk,rk , ‖R̄‖Cx <∞}, where

(4.31) ‖R̄‖Cx = sup {e−Lkε‖D(N)Rk‖xk,α : k ≥ 0}
with the norm ‖.‖xk,α defined as in (4.25) and satisfying (4.28). We consider the

operator T̃ x induced by T̃ on Cx:
(4.32) (T̃ x(R̄))k = (Pxk)−1 ◦ (HN

xk+1
+Rk+1) ◦ Fxk −HN

xk
.

Now we estimate the growth of CN,α norms of HN
x and T (HN)x = P−1

x ◦ HN
fx ◦ Fx

along the orbit to verify that T̃ x(0̄) is in Cx. We recall that

D
(1)
0 (Hxk) = Id and D

(1)
0 (Pxk) = P (1)

xk
= Fxk

by the construction, and the latter satisfies

‖Fxk‖xk+1←xk ≤ eχ`+ε and ‖F−1
xk
‖xk←xk+1

≤ e−χ1+ε.

Also, for 2 ≤ n ≤ d, the Lyapunov norms of D
(n)
0 (Pxk) = P

(n)
xk and D

(n)
0 (Hxk) = H

(n)
xk

grow at most at the exponential growth rate n2ε in k by (4.10).

Recall that the inverse of Pxk is also a sub-resonance polynomial P−1
xk

=
∑d

n=1(P−1
xk

)(n).

We now show that the Lyapunov norms of (P−1
xk

)(n) also grows at most at the exponen-

tial rate n2ε in k. First, its linear term (P−1
xk

)(1) = (P
(1)
xk )−1 = F−1

xk
has bounded Lya-

punov norm. Inductively, we consider terms of order n > 1 in the equation P◦P−1 = Id
and obtain

P(1)
xk
◦ (P−1

xk
)(n) + P(n)

xk
◦ (P−1

xk
)(1) +

∑
i,j<n, ij=n

P(i)
xk
◦ (P−1

xk
)(j) = 0.

The terms in the sum can be estimated as ‖P(i)
xk ◦ (P−1

xk
)(j)‖ ≤ ‖P(i)

xk ‖ · ‖(P−1
xk

)(j)‖i and
hence are (i2 + j2i)ε-tempered by the inductive assumption. Since i, j ≤ n/2 we obtain

i2 + j2i = i2 + ni ≤ n2/4 + n2/2 < n. Multiplying the equation by bounded (P
(1)
xk )−1

we conclude that (P−1
xk

)(n) is n2ε-tempered, completing the induction.
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Now we estimate CN,α norms of polynomials HN and P−1. For HN , the derivative of

order N is constant H
(N)
x on Ex, and the lower derivatives on Bx,ρ(x) can be inductively

estimated similarly to (4.26),

‖D(N−1)
t Hx‖x←x ≤ ‖D(N−1)

0 Hx‖x←x + ‖t‖x‖H(N)
x ‖x←x ≤ ‖H(N−1)

x ‖x←x + ‖H(N)
x ‖x←x

yielding the same estimate of the exponential rate as for H
(N)
x ,

(4.33) ‖Hxk‖CN,α(B xk,ρ(xk)) ≤ c1(x)eN
2kε for all k ≥ 0.

Similarly for P−1
xk

the derivative of order d ≤ N is constant on Exk , higher derivatives
are zero, and the lower derivatives can be estimated as for H, so we obtain

(4.34) ‖(Pxk)−1‖CN,α(B xk,ρ(xk)) ≤ c2(x)eN
2kε for all k ≥ 0.

To obtain estimates for (T (HN))x = P−1
x ◦ HN

fx ◦ Fx we use the following lemma.

Lemma 4.5. If Q is a polynomial of degree at most N and F is CN,α then Q ◦ F is
CN,α and ‖Q ◦ F‖CN,α ≤ cN ‖Q‖CN ‖F‖NCN,α + ‖Q‖C0, where cN depends on N only.

Proof. Since Q is C∞ it is clear that Q ◦ F is CN . For the N th derivative we have

D
(N)
t (Q ◦ F) = DF(t)Q ◦D(N)

t F +
∑

kj=N, j<N

D
(k)
F(t)Q ◦D

(j)
t F .

First we estimate α-Hölder constant at 0 of the first term. As DQ is linear, we get

DF(t)Q ◦D(N)
t F −D0Q ◦D(N)

0 F = (DF(t)Q−D0Q) ◦D(N)
t F +D0Q ◦ (D

(N)
t F −D

(N)
0 F)

whose norm can be estimated by

‖DF(t)Q−D0Q‖ · ‖D(N)
t F‖+ ‖D0Q‖ · ‖D(N)

t F −D
(N)
0 F‖ ≤

≤ ‖Q‖C2 · ‖F(t)‖ · ‖F‖CN,α + ‖Q‖C1 · ‖F‖CN,α · ‖t‖α ≤
≤ ‖Q‖C2 · ‖F‖CN,α · ‖F‖C1 · ‖t‖+ ‖Q‖C1 · ‖F‖CN,α · ‖t‖α.

So the α-Hölder constant at 0 of DF(t)Q ◦ D(N)
t F is estimated by 2‖Q‖CN ‖F‖2

CN,α .
The other terms in the sum are C1 and hence are Lipschitz with constant bounded
by supremum norms of their derivatives. These norms, along with the norms of lower
derivatives of Q ◦ F can be estimated as a sum of termss of the type

(4.35) ‖D(k)
F(t)Q ◦D

(j)
t F)‖ ≤ ‖D(k)

F(t)Q‖ · ‖D
(j)
t F‖k ≤ ‖Q‖CN ‖F‖NCN,α .

We conclude that ‖Q ◦ F‖CN,α ≤ cN ‖Q‖CN ‖F‖NCN,α + ‖Q‖C0 . �

Later we will also need a similar result for the case when Q is not a polynomial.

Lemma 4.6. If Q and F are CN,α, then Q ◦ F is CN,α and
‖Q ◦ F‖CN,α ≤ c′′N ‖Q‖CN,α ‖F‖N+α

CN,α
+ ‖Q‖C0 , where c′′N depends on N only.
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Proof. The proof is the same as in Lemma 4.5 except that, since D(N)Q is only Hölder,

we also need to estimate the α-Hölder constant at 0 of the term D
(N)
F(t)Q ◦DtF in

D
(N)
t (Q ◦ F) = D

(N)
F(t)Q ◦DtF +DF(t)Q ◦D(N)

t F +
∑

kj=N, j,k<N

D
(k)
F(t)Q ◦D

(j)
t F .

We consider

D
(N)
F(t)Q ◦DtF −D(N)

0 Q ◦D0F =

= (D
(N)
F(t)Q−D

(N)
0 Q) ◦DtF +D

(N)
0 Q ◦D(N)

t F −D
(N)
0 Q ◦D(N)

0 F

and estimate its norm as

‖Q‖CN,α‖F(t)‖α · ‖DtF‖N + Lip(D
(N)
0 Q) · ‖DtF −D0F‖ ≤

≤ ‖Q‖CN,α · (‖F‖C1‖t‖)α · ‖F‖NC1 + c′N ‖D
(N)
0 Q‖ ‖F‖N−1

C1 · ‖F‖C1,α · ‖t‖α ≤
≤ ‖t‖α

(
‖Q‖CN,α · ‖F‖N+α

C1 + c′N ‖Q‖CN · ‖F‖N−1
C1 · ‖F‖C1,α

)
.

Here we estimated the Lipschitz constant Lip(D
(N)
0 Q) of the homogeneous polynomial

N -form D
(N)
0 Q on a ball of radius R = ‖F‖C1 by the supremum of its derivative on that

ball, which is a homogeneous polynomial (N − 1)-form whose norm can be estimated

by ‖D(N)
0 Q‖ with some constant c′N depending on N only.

So the α-Hölder constant at 0 of D
(N)
F(t)Q ◦DtF is estimated by

‖Q‖CN,α(‖F‖N+α
C1 + c′N‖F‖NC1,α) ≤ (c′N + 1)‖Q‖CN,α‖F‖N+α

CN,α
.

We conclude as in Lemma 4.5 that ‖Q ◦ F‖CN,α ≤ c′′N ‖Q‖CN,α ‖F‖N+α
CN,α

+ ‖Q‖C0 . �

We apply Lemma 4.5 with Q = HN and then with Q = P−1. We conclude that
T (HN) is CN,α. Moreover, since ‖F‖NCN,α is 2ε-tempered by (4.19), using (4.34) and
(4.33) we can estimate the growth rate for T (HN) by N2ε+N(N2ε+N 2ε) and obtain

(4.36) ‖T (HN)k‖CN,α(B xk,ρ(xk)) ≤ c3(x)e(N3+3N2)kε.

Recall that L ≥ max{κ,N3 + 3N2 + 1} by (4.1). Using r < ρ(x), (4.29), and Lemma
4.1(1) we obtain that that for all k ≥ 0

(4.37) rk = re−2NLεk < re−Lεk < ρ(x)e−κεk ≤ ρ(xk).

Finally, L > N3 + 3N2 ensures that T̃ (0̄) ∈ Cx as ‖T̃ (0̄)‖Cx is at most

(4.38) γ′ = sup
k≥0

e−Lkε
(
‖T (HN)k‖CN,α(B xk,ρ(xk)) + ‖HN‖CN,α(B xk,ρ(xk))

)
<∞.

We recall that ν > 0 is given by (4.3) and define

(4.39) θ = (1− e−ν/2)/2, 0 < θ < 1, and γ = γ′/θ.
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We choose r = r(x) < ρ(x) < 1 satisfying

(4.40)
r ≤ ε/(2c2(x)γ), r < ρ(x)/(2γ), r ≤ θ/(c5(x)γNe(M+L)ε),

where θ, γ, c2(x), c5(x), M are given by (4.39), (4.34), (4.46).

We denote by Bx(γ) the closed ball in Cx of radius γ. Our goal is to show that T̃ x

is a (1 − θ)-contraction and that T̃ x(Bx(γ)) ⊂ Bx(γ). Since ‖T̃ (0̄)‖Cx ≤ γ′ it suffices
to prove that the differential of T̃ x at R̄ is a (1− θ)-contraction for each R̄ ∈ Bx(γ).

First we check that the compositions in (T̃ (R̄))k are well-defined. We take t ∈ Bxk,rk

and show that t′ = Fxk(t) is in Bxk+1,rk+1
. Since by (4.37) t is in the ball Bxk,ρ(xk) in

standard metric, the estimates in Lemma 4.1 hold for any k. In particular, by (2),(5)

(4.41) ‖D(1)
t Fxk‖xk+1←xk ≤ eχ`+2ε and ‖t′‖xk+1

= ‖Fxk(t)‖xk+1
≤ eχ`+2ε‖t‖xk .

Since ‖t‖xk ≤ rk = re−2NLkε, this yields

(4.42) ‖t′‖xk+1
≤ eχ`+2εre−2NLkε < re−2NL(k+1)ε = rk+1,

since by the choice of ε we have χ` + 2ε+ 2NLε < 0.
Now we estimate t′′ = (HN

xk+1
+Rk+1)(t′) to show that it is in Bxk+1,ρ(xk+1) where we

have estimates for (Pxk)−1. Using the mean value theorem, (4.38), and the inequality
γ′ < γ we obtain

‖HN
xk+1

(t′)‖xk+1
≤ ‖t′‖xk+1

‖HN
xk+1
‖C1 ≤ ‖t′‖xk+1

‖HN
xk+1
‖CN,α(B xk+1,ρ(xk+1))

≤ rk+1e
L(k+1)εγ′ ≤ re(1−2N)L(k+1)εγ ≤ rγ e−L(k+1)ε

as 2N − 1 ≥ 1. Using (4.28) we obtain similarly that for any R̄ ∈ Bx(γ),

‖Rk+1(t′)‖xk+1
≤ ‖t′‖xk+1

· ‖D(N)Rk+1‖xk+1,α ≤ rk+1e
L(k+1)ε · ‖R̄‖Cx ≤ rγ e−L(k+1)ε.

Since ρ(xk) ≥ ρ(x)e−κεk ≥ ρ(x)e−Lεk and 2γr < ρ(x) by (4.40), we obtain

(4.43) ‖t′′‖xk+1
= ‖(HN

xk+1
+Rk+1)(t′)‖xk+1

≤ 2γre−L(k+1)ε < ρ(x)e−L(k+1)ε ≤ ρ(xk+1).

Now we show that T̃ x is a contraction on Bx(γ) by estimating its differential. For
any R̄, S̄ ∈ Bx(γ) we can write

(T̃ x(R̄ + S̄)− T̃ x(R̄))k =

= (Pxk)−1 ◦ (HN
xk+1

+Rk+1 + Sk+1) ◦ Fxk − (Pxk)−1 ◦ (HN
xk+1

+Rk+1) ◦ Fxk .

Differentiating (Pxk)−1 and denoting

y(t) = (HN
xk+1

+Rk+1)(Fxk(t)) and z(t) = Sk+1(Fxk(t))

we obtain

(T̃ x(R̄ + S̄)− T̃ x(R̄))k(t) = Dy(t)(Pxk)−1 z(t) + E(z(t)),
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where E is a polynomial with terms of degree at least two. It follows that ‖E(z(t))‖Cx =
O(‖S̄‖2

Cx) and so the differential of T̃ x is given by

([DR̄T̃
x]S̄)k(t) = Dy(t)(Pxk)−1 Sk+1(Fxk(t)) = Ak(y(t))z(t),

where Ak(s) = Ds(Pxk)−1. To estimate the norm we consider the derivative of order
N . Since Ak(y(t)) is a linear operator on z, the product rule yields

(4.44) D(N)[Ak(y(t))z(t)] = Ak(y(t))D(N)z(t) +
∑

cm,lD
(m)Ak(y(t))D(l)z(t),

where m+ l = N and l < N for all terms in the sum. Differentiating z(t) we get

D(l)z(t) = D(l)Sk+1(Fxk(t)) =
∑

D
(i)
t′ Sk+1 ◦D(j)

t Fxk ,

where ij = l and t′ = Fxk(t). Only the first term in (4.44) contains D(N)Sk+1 so

(4.45) D
(N)
t ([DR̄T̃

x]S̄)k = D
(1)
y(t) (Pxk)−1 ◦D(N)

t′ Sk+1 ◦D(1)
t Fxk + Jk,

where Jk consists of a fixed number of terms of the type

D
(m)
t Ak(y(t))

(
D

(i)
t′ Sk+1 ◦D(j)

t Fxk
)
, i < N, m+ ij = N,

whose Lyapunov norms can be estimated by

‖Ak(y(t))‖CN ,xk · ‖D
(i)
t′ Sk+1‖xk+1

· ‖Fxk‖N−1
CN ,xk

.

We use (4.19) to estimate the last term: ‖Fxk‖CN,α,xk ≤ K(x)C(x)e(2k+1)ε. For the
middle term by (4.27) we have as i < N

‖D(i)
t′ Sk+1‖xk+1

≤ ‖t′‖1+α
xk+1
· ‖D(N)Sk+1‖xk+1,α < ‖t‖1+α

xk
· ‖S̄‖Cx eL(k+1)ε

since ‖t′‖xk+1
≤ eχ`+2ε‖t‖xk < ‖t‖xk by (4.41).

Since (Pxk)−1 is polynomial of degree at most N , using (4.34) we obtain

‖Ak‖CN (B xk,ρ(xk)) = ‖D(Pxk)−1‖CN (B xk,ρ(xk)) ≤ ‖(Pxk)−1‖CN (B xk,ρ(xk)) ≤ c2(x)eN
2kε.

Finally, since y(t) = (HN
xk+1

+ Rk+1)(Fxk(t)) = t′′ ∈ Bxk+1,ρ(xk+1) by (4.43), the first

term in (4.44) can be estimated using Lemma 4.5 and equation (4.35)

‖Ak(y(t))‖CN ,xk ≤ ‖(Pxk)
−1‖CN (B xk,ρ(xk)) · ‖y(t)‖NCN ,xk ≤

≤ c2(x) eN
2kε ·

(
‖HN

xk+1
+Rk+1‖CN ,xk+1

· ‖Fxk(t)‖NCN ,xk
)N
≤

≤ c2(x) eN
2kε · (2γeL(k+1)ε)N · (K(x)C(x)e(2k+1)ε)N

2 ≤ c4(x) γN · e(NL+3N2)(k+1)ε.

since we have ‖R̄‖Cx ≤ γ and HN
xk+1

term is estimated similarly from (4.38). Thus we

obtain the following for the norm of Jk in (4.45).

(4.46)
‖Jk‖ < c5(x) γN · e(NL+3N2)(k+1)ε · ‖t‖1+α

xk
· ‖S̄‖Cx · eL(k+1)ε · eN(2k+1)ε

< c5(x) γNrk e
(M+L)(k+1)ε · ‖t‖αxk · ‖S̄‖Cx , where M = NL+ 3N2 + 2N.
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For the first term in (4.45) we claim that for t′′ = y(t)

(4.47) ‖D(1)
t′′ (Pxk)−1‖xk←xk+1

≤ e−χ1+2ε.

Indeed, we recall that

‖D(1)
0 (Pxk)−1‖xk←xk+1

= ‖F−1
xk
‖xk←xk+1

≤ e−χ1+ε.

If d = 1 then D(1) (Pxk) is constant and (4.47) follows. If d ≥ 2 then N ≥ 2 and the

Lipschitz constant of D(1) (Pxk)−1 is at most c2(x)eN
2kε by (4.34). So using (4.43) we

obtain

‖D(1)
t′′ (Pxk)−1 −D(1)

0 (Pxk)−1‖xk←xk+1
≤ c2(x)eN

2kε · ‖t′′‖xk+1
≤

≤ c2(x)eN
2kε · 2γr e−L(k+1)ε ≤ c2(x)2γr e(N2−L)(k+1)ε < c2(x)2γr ≤ ε,

where the last two inequalities hold since N2 < L and r ≤ ε/(2c2(x)γ) by (4.40). Then
(4.47) follows from e−χ1+ε + ε < e−χ1+ε(1 + ε) < e−χ1+2ε.

Now we estimate the main term in (4.45) using (4.47) and (4.41):

(4.48)

‖D(1)
t′′ (Pxk)−1 ◦D(N)

t′ Sk+1 ◦D(1)
t Fxk‖xk←xk ≤

≤ ‖D(1)
t′′ (Pxk)−1‖xk←xk+1

· ‖D(N)Sk+1‖xk+1,α ‖t′‖αxk+1
· ‖D(1)

t Fxk‖Nxk+1←xk ≤

≤ e−χ1+2ε · ‖S̄‖CxeL(k+1)ε · eα(χ`+2ε)‖t‖αxk · e
N(χ`+2ε) = e−ν+L′ε‖t‖αxk ‖S̄‖Cx e

Lkε,

where ν = −(N + α)χ` + χ1 > 0 and L′ = 2 + L + 2(N + α). Since ε ≤ ε0 ≤ ν/(2L′)
by the choice of ε0, we obtain that e−ν+L′ε ≤ e−ν/2 = 1− 2θ by (4.39).

Finally we estimate (4.45) combining (4.46) and (4.48). For any R̄ ∈ Bx(γ) we have

‖D(N)
t ([DR̄T̃

x]S̄)k‖xk←xk ≤ ‖t‖αxk · ‖S̄‖Cx · e
Lkε
(
1− 2θ + c5(x)γNrke

((M+L)(k+1)−Lk)ε
)
.

Since rk = re−2NLkε and 2NL ≥M , as L ≥ N3 + 3N2 + 1, we see that for all k ≥ 0

c5(x)γNrk e
((M+L)(k+1)−Lk)ε ≤ c5(x)γN re((M−2NL)k+M+L)ε ≤ c5(x)γNre(M+L)ε ≤ θ

as r ≤ θ/(c5(x)γNe(M+L)ε) by (4.40). Then for all R̄ ∈ Bx(γ) we obtain

‖D(N)
t ([DR̄T̃

x]S̄)k ‖xk←xk ≤ ‖t‖αxk · ‖S̄‖Cx · e
Lkε (1− θ) , hence

‖D(N)([DR̄T̃
x]S̄)k ‖xk,α ≤ (1− θ) · ‖S̄‖Cx · eLkε, and so

‖ [DR̄T̃
x]S̄ ‖Cx = sup

k
e−Lkε ‖D(N)(T̃ x(S̄))k ‖xk,α ≤ (1− θ) · ‖S̄‖Cx .

Thus ‖DR̄T̃
x‖ ≤ 1− θ for all R̄ ∈ Bx(γ). Since ‖T̃ x(0)‖Cx ≤ γ′ = θγ, the operator T̃ x

is a contraction from Bx(γ) to Bx(γ). Thus T̃ x has a unique fixed point R̄x ∈ Bx(γ)
which depends measurably on x. As in the construction of Taylor coefficients, the
uniqueness implies that Rx := (R̄x)0 is Lε-tempered and solves the equation T̃ (R) = R
where T̃ is given by (4.24). We conclude that the measurable family of CN,α maps
Hx = HN

x + Rx, is Lε-tempered and satisfies (4.23), i.e. conjugates Px and Fx. Then
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the maps Hx defined on Bx,r(x) can be uniquely extended to CN,α diffeomorphisms on
Bx,ρ(x) by the invariance

Hx(t) = (Pkx)−1 ◦ Hfkx ◦ Fkx (t)

since for each t ∈ Bx,ρ(x) we have Fkx (t) ∈ Bxk,rk for some k. Indeed, Fkx (t) is contracted
by Lemma 4.1(5) at a faster rate than rk by the choice (4.4) of ε0: χ` + 2ε < −2NLε.

This completes the proof of the first part of the theorem.

4.3. Prove of part (2): “uniqueness” of H. This essentially follows from the
“uniqueness” of the construction. Starting with H1 = H̃ we inductively construct
coordinate changes Hk = {Hk,x} for k = 1, ..., N and show that they satisfy the same
temperedness condition as H. We denote their Taylor series by

Hk,x(t) =
∞∑
n=1

H
(n)
k,x (t).

The base of the induction is H1 = H̃, which is tempered by the assumption and whose

linear term satisfies H
(1)
1,x = H

(1)
x = Id. Suppose Hk−1, k ≥ 2, is constructed so that

H
(n)
k−1,x are n2ε-tempered for n = 1, ..., N, H(n)

x = H
(n)
k−1,x for n = 1, ..., k − 1,

and the corresponding normal form Pk−1,x is of sub-resonance type. It follows that P
and Pk−1 have the same terms up to order k−1. Hence H

(k)
k−1,x and H

(k)
x satisfy the same

equation (4.13) when projected to the factor-bundle R(k)/S(k). Indeed, the Q term
defined by (4.12) is composed only of F (i) and terms H(i) and P (i) with 1 < i ≤ k− 1,
which are the same for Hk−1 and H. By uniqueness we obtain that

H(k)
x = H

(k)
k−1,x + ∆(k)

x , where ∆(k)
x ∈ S(k)

x .

Then the coordinate change Hk,x = (Id + ∆
(k)
x ) ◦ Hk−1,x has the same Taylor terms as

H up to order k and, since the polynomial Id + ∆
(k)
x is in Gχ, Hk conjugates F to a

sub-resonance normal form Pk,x = (Id + ∆
(k)
fx ) ◦ Pk−1,x ◦ (Id + ∆

(k)
x )−1. To complete

the inductive step we need to show that ‖H(n)
k,x‖ is n2ε-tempered. It suffices to show

this for ‖R(n)‖ where R = Hk,x − Hk−1,x = ∆
(k)
x ◦ Hk−1,x. Since ∆

(k)
x is homogeneous

of degree k, R has only homogeneous terms of degrees n = jk. We estimate them as

‖R(n)‖ = ‖∆(k)
x ◦ H

(j)
k−1,x‖ ≤ ‖∆

(k)
x ‖ · ‖H

(j)
k−1,x‖

k,

which is (k2 + j2k)ε-tempered by the inductive assumption and the definition of ∆
(k)
x .

Since j ≤ n/2 as k ≥ 2 we get j2k = jn ≤ n2/2. Also, if j ≥ 2 then k2 ≤ n2/4, and we
obtain n2ε-temperedness. If j = 1, then n = k and R(k) = ∆(k) is also k2ε-tempered.

Thus in N steps we obtain the coordinate change

HN,x = Gx ◦ H̃x, where Gx = (Id + ∆(N)
x ) ◦ · · · ◦ (Id + ∆(2)

x ) ∈ Gχ
x ,



NORMAL FORMS FOR NON-UNIFORM CONTRACTIONS 21

which has the same Taylor terms at 0 as H up to order N . In fact, for n > d we
have S(n) = 0 and hence ∆(n) = 0, so that HN = Hd. Now we show that H = HN ,
which also proves the last statement in part (2) of the theorem. The equality follows
from the uniqueness in the final step of the construction. Indeed, for HN given by
(4.21), both differences R = H−HN and R′ = HN −HN are fixed points of operator
T̃ given by (4.24). Hence R = R′ by uniqueness of the fixed point in the appropriate
space Cr,x on which T̃ induces a contraction. To ensure that the sequence (R′xk) is

in Cr,x we need to estimate temperedness of α-Hölder constant at 0 for H(N)
N . As

above one can see that all terms in the polynomial Gx are N2ε-tempered. Then using
Lemma 4.5 and the assumption on H̃ we obtain that ‖HN,x‖CN,α is L̃ε-tempered for

L̃ = (N2 +NL) < (N + 1)L and hence (R′xk) is in Cr,x with L̃ in place of L. Since the

proof of part (1) is for any L ≥ L(N,α), we conclude that T̃ induces a contraction in
such Cr,x provided that ε < ε1 = ε0/(N + 1), which is less than ε0 with L̃ in pace of L
in (4.4). Thus R = R′ and hence H = HN .

4.4. Proof of Corollary 2.4. By part (2) of Theorem 2.3, if we fix a choice of Taylor
polynomials of degree d for Hx, then the family Hx is unique. Then for each N > d
we can do the construction in part (1) with this fixed choice of Taylor polynomials
and obtain the family of CN diffeomorphisms Hx. By uniqueness, all these families
coincide and hence Hx are C∞ diffeomorphisms.

4.5. Proof of part (3): Centralizer of H. First we prove that the derivative of G
at zero section, Γx = D0Gx, is sub-resonance. Since Γx is linear, this is equivalent to
the fact that Γx preserves the fast flag associated with the Lyapunov splitting

(4.49) E1
x = V1

x ⊂ V2
x ⊂ ... ⊂ V lx = Ex, where V ix = E1

x ⊕ · · · ⊕ E ix.

Suppose to the contrary that for some x ∈ Λ and some i < j we have a vector t in E ix
such that t′ = Γx(t) has nonzero component t′j in E jgx. Then

‖(F n
gx ◦ Γx)(t)‖fngx ≥ ‖F n

gx(t
′
j)‖fngx ≥ e(χj−ε)n ‖t′j‖gx

and on the other hand

‖(F n
gx ◦ Γx)(t)‖fngx = ‖Γfnx(F n

x t)‖gfnx ≤ ‖Γfnx‖gfnx←fnx · e(χi+ε)n‖t‖x ≤ Ce(χi+3ε)n,

which is impossible for large n since ε is small. Here we used the fact that the CN,α

norm ‖Gx‖CN,α,x on Ex is 2ε-tempered with respect to the Lyapunov metric (3.2) for F .
This follows as in (4.19) since ‖Gx‖CN,α in standard norm is ε-tempered by assumption.

We conclude that Γx is sub-resonance for each x ∈ Λ. Now we consider a new family
of coordinate changes

H̃x = Γ−1
x ◦ Hgx ◦ Gx
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which also satisfies H̃x(0) = 0 and D0H̃x = Id. A direct calculation shows that

H̃fx ◦ Fx ◦ H̃−1
x = Γ−1

fx ◦ Hfgx ◦ Gfx ◦ Fx ◦ G−1
x ◦ H−1

gx ◦ Γx =

= Γ−1
fx ◦ Hfgx ◦ Fgx ◦ H−1

gx ◦ Γx = Γ−1
fx ◦ Pgx ◦ Γx = P̃x,

where P̃x is a sub-resonance polynomial as a composition of sub-resonance polynomials.
Now we would like to to apply the uniqueness part of the theorem, which would give
H̃x = GxHx for some tempered function Gx ∈ Gχ. Then it follows from the definition

of H̃x that
Hgx ◦ Gx = Γx ◦ H̃x = (ΓxGx) ◦ Hx

so that Hgx ◦Gx ◦H−1
x = ΓxGx, which is again a sub-resonance polynomial, as claimed.

To complete the proof it remains to show that H̃x is suitably tempered to obtain

uniqueness. The nth Taylor term ot 0, H̃(n)
x , is the sum of the terms of the form

Γ−1
x ◦ H

(k)
gx ◦ G(j)

x with n = kj, whose Lyapunov norms as we can estimate as before

‖Γ−1
x ◦ H(k)

gx ◦ G(j)
x ‖x←x ≤ ‖Γ−1

x ‖x←gx · ‖H(k)
gx ‖gx←gx · ‖G(j)

x ‖kgx←x.

Thus we obtain that H̃(n)
x is mε-tempered with m ≤ 2 + k2 + 2k < 3n2 for n ≥ 2.

Since ‖H‖CN,α is Lε-tempered, using Lemma 4.6 with Q = H and F = G we obtain
that ‖H◦G‖CN,α is (L+ 2(N +α))ε-tempered. Then Lemma 4.5 implies that ‖H̃‖CN,α
is (2 + L + 2(N + α))ε-tempered and hence 3Lε-tempered since L ≥ N + 2. So the
uniqueness result in part (2) of the theorem applies for ε < ε∗ = ε1/3 = ε0/3(N + 1).

This completes the proof of Theorem 2.3. �

5. Proof of Theorem 2.5

5.1. Proof of (i), (ii), (iii), (v). We will apply Theorem 2.3. First we note that the
integrability condition for the derivative in Theorem 2.3 was used in the proof only to
obtain the Lyapunov splitting and the Lyapunov metric. So while the restriction Df |E
may not satisfy this integrability condition, the Lyapunov splitting and the Lyapunov
metric are obtained in this case from the results for the full differential Df .

The centralizer part (v) will follow directly from part (3) of Theorem 2.3 since
X ′ =

⋂
n∈Z g

n(X) is the desired invariant set of full measure as g preserves the measure
class of µ. Moreover, g(Wx) = Wgx since g is a diffeomorphism commuting with f , so
that X ′ is also saturated by the stable manifolds.

Parts (i), (ii), (iii) essentially follow from Theorem 2.3, which is formulated so as
to apply to this setting. First we consider the regular set Λ for (Df, µ). We fix a
family of local (strong) stable manifolds Wx,r(x) for x ∈ Λ of sufficiently small size
r(x). Identifying Wx,r(x) by an exponential map with a neighborhood of 0 in Ex we
obtain the extension F = {Fx} of f . Then the properties of local stable manifolds
ensure that F satisfies the assumptions of Theorem 2.3. Indeed, they are given by
CN,α embeddings so that the CN,α norm and 1/r(x) are ε-tempered for any ε > 0 (see
[BP] for a general reference and [KtR15, Theorem 5] for a convenient statement of the
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stable manifold theorem). Hence Theorem 2.3 yields existence of the desired family of
local diffeomorphisms Hx, x ∈ Λ, which can be uniquely extended by invariance

Hx(t) = (Pkx)−1 ◦ Hfkx ◦ fk(t)

to the global stable leaf Wx, which consists of those t ∈M for which fkt is in the local
stable leaf of fkx for some k. Now we define X =

⋃
x∈ΛWx and explain the construction

of Hy for any y ∈ X. By iterating it forward we may assume that y ∈ Wx,r(x). While
the individual Lyapunov spaces E i may not be defined for all points y ∈ Wx,r(x), the flag
V of fast subspaces (4.49) is defined for each Ey = TyWx,r(x), moreover, the subspaces
V iy depend Hölder continuously, and in fact CN−1,α, on y along Wx [R79, Theorem 6.3].

The key observation is that the notion of sub-resonance polynomial depends only on
the fast flag V [KS16, Proposition 3.2], not on the individual Lyapunov spaces E i, and
thus is well-defined for Ey. Then the sub-bundle S(n) of sub-resonance polynomials of
degree n is well-defined, invariant under Df , and Hölder continuous in y along W , and
hence so is the factor bundle R(n)/S(n). Then for each y ∈ Wx,r(x) we can define Hy

using the construction in Theorem 2.3. Indeed, first we constructed the Taylor term
of degree n using the contraction Φ̃ on the bundle R(n)/S(n) from Lemma 4.4 with
linear part estimated as ‖Φx(R)‖ε,x ≤ eλ+(n+1)ε · ‖R‖ε,fx. Then Φy, the corresponding
map at y, is Hölder close to Φx. We note that since Wx,r(x) are CN,α embedded, the

derivatives F
(n)
y = D

(n)
0 Fy of all orders n ≤ N depend α-Hölder continuously on y in

Wx,r(x). In fact, the linear operator Φy depends only on the first derivative. Using the
Lyapunov norm at x as the reference norm, we obtain that Φy is also a contraction
with similar estimate for all y ∈ Wx,r(x) provided that r(x) is sufficiently small. Since
fky ∈ Wfkx,r(fkx) by the contraction property of Wx,r(x), the closeness persists along
the forward trajectory. This argument is similar to the proof of Lemma 4.1. Then we
obtain that the operator Φ̃y on the sequence space is also a contraction. Thus we can

define H̄(n)
y as before using the unique fixed point in the space of sequences. The last

step of the construction can be carried out similarly as it involves only the estimates of
the derivatives on the full space E and does not depend on the splitting. This completes
the proof of (i), (ii), (iii).

Remark 5.1. Any measurable choice of transversals Ẽ i to V i−1 inside V i, i = 2, ..., `,
yields a transversal Ñ (n) to S(n) inside R(n). The latter gives a preferred choice of the

lift. The fixed point of the contraction H̄(n)
y depends Hölder continuously (and even

smoothly by appropriate Cr section theorem as in [KS16]) on y along Wx,r(x) if the same

holds for the data Q̃ obtained in the previous step of the construction. To complete the

inductive step we need a Hölder lift H(n)
y to R(n). If there is a consistent choice which

is Hölder on the full leaves of W , then we can obtain a family {Hx} which is Hölder
along the leaves of W . In contrast to the uniform setting of [KS16], it is not clear
that such a choice exists. However, this can be done locally on Wx,r(x). Therefore, one
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can fix a Ledrappier-Young partition subordinate to the leaves of W [LY85, Definition
1.4.1 and Lemma 3.1.1] and obtain Hölder continuity of Hx on each element.

5.2. Consistency of the fast foliations. The leaf Wx is subfoliated by unique folia-
tions Uk tangent to Vky . We denote by W̄ k the corresponding foliations of Ex obtained

by the identification Hx : Wx → Ex. Thus we obtain the foliations W̄ k of E which
are invariant under the polynomial extension P . Since the maps Hx are diffeomor-
phisms, W̄ k are also the unique fast foliations with the same contraction rates. They
are characterized by

for y, z ∈ Ex, z ∈ W̄ k(y) if and only if lim
n→∞

1

n
log dist(Pnx (y),Pnx (z)) < χk+1.

It follows from Definition 2.2 that sub-resonance polynomials R ∈ Sx,y are block
triangular in the sense that E i component does not depend on E j components for j < i
or, equivalently, it maps the subspaces V ix of the fast flag in Ex to those in Ey.

It is easy to see that all derivatives of a sub-resonance polynomial are sub-resonance
polynomials. In particular, the derivative DyPx at any point y ∈ Ex is sub-resonance
and hence is block triangular. Thus it maps subspaces parallel to Vkx to subspaces
parallel to Vkfx. Hence the foliation of E by subspaces parallel to Vkx in Ex is invariant

under the extension P and hence coincides with W̄ k by uniqueness of the fast foliation.

Remark 5.2. This implies that the fast subfoliations Uk are as smooth along the leaf
Wx as the diffeomorphism Hx which maps them to linear subfoliations of Ex.

It follows that for any x ∈ X and any y ∈ Wx the diffeomorphism

(5.1) Gx,y = Hy ◦ H−1
x : Ex → Ey

maps the fast flag of linear foliations of Ex to that of Ey. In particular, the same holds
for its derivative D0Gx,y = DxHy : Ex → Ey and we conclude that D0Gx,y is block
triangular and thus is a sub-resonance linear map.

5.3. Proof of (iv): Consistency of normal form coordinates. We need to show
that the map Gx,y in (5.1) is a sub-resonance polynomial map for all x ∈ X and
y ∈ Wx. It suffices to consider x ∈ Λ and, using invariance, we may assume that
y ∈ Wx is sufficiently close to x. First we note that

Gx,y(0) = Hy(x) =: x̄ ∈ Ey and D0 Gx,y = DxHy.

Since H−1
fnx ◦ Pnx ◦ Hx = fn = H−1

fny ◦ Pny ◦ Hy we obtain that

Hfny ◦ H−1
fnx ◦ P

n
x = Hfny ◦ fn ◦ H−1

x = Pny ◦ Hy ◦ H−1
x and hence

(5.2) Gfnx,fny ◦ Pnx = Pny ◦ Gx,y.



NORMAL FORMS FOR NON-UNIFORM CONTRACTIONS 25

Now we consider the Taylor polynomial for Gx,y : Ex → Ey at t = 0 ∈ Ex:

Gx,y(t) ∼ Gx,y(t) = x̄+
N∑
m=1

G(m)
x,y (t).

Our first goal is to show that all its terms are sub-resonance polynomials. We proved

in Section 5.2 that the first derivative G
(1)
x,y = DxHy is a sub-resonance linear map.

Inductively, we assume that G
(m)
x,y has only sub-resonance terms for m = 1, ..., k − 1

and show that the same holds for G
(k)
x,y. Suppose for the contrary that G

(k)
x,y is not a sub-

resonance polynomial and consider order k terms in the Taylor polynomial at 0 ∈ Ex
for (5.2). Taylor polynomial for Pnx at 0 coincides with itself, Pnx (t) =

∑d
m=1 P

(m)
x (t).

We also consider the Taylor polynomial for Pny at Gx,y(0) = x̄ ∈ Ey

Pny (z) = x̄n +
d∑

m=1

Q(m)
y (z − x̄), where x̄n = Pny (x̄).

All terms Q(m) are sub-resonance as the derivatives of a sub-resonance polynomial.
Consider the Taylor polynomial for

Gfnx,fny(t) ∼ Gfnx,fny(t) = x̄n +
N∑
m=1

G
(m)
fnx,fny(t).

Now we obtain from (5.2) the coincidence of the terms up to degree N in

x̄n +
N∑
j=1

G
(j)
fnx,fny

(
d∑

m=1

P (m)
x (t)

)
∼ x̄n +

d∑
m=1

Q(m)
y

(
N∑
j=1

G(j)
x,y(t)

)
.

Since any composition of sub-resonance polynomials is again sub-resonance, the in-
ductive assumption gives that all terms of order k in the above equation must be
sub-resonance polynomials except for

G
(k)
fnx,fny

(
P (1)
x (t)

)
and Q(1)

y

(
G(k)
x,y(t)

)
.

Multiplying these terms on the left by sub-resonance linear map (D0Gfnx,fny)−1 =

(DfnxHfny)
−1 and using the fact that P

(1)
x = F n

x = Dfn|Ex and

Q(1)
y = Dx̄Pny = DfnxHfny ◦ F n

x ◦ (DxHy)
−1

we obtain that the following maps from Ex to Efnx agree modulo sub-resonance terms(
(DfnxHfny)

−1 ◦G(k)
fnx,fny

)
◦ F n

x
∼= F n

x ◦
(
(DxHy)

−1 ◦G(k)
x,y

)
mod Sx,fnx.

Since x, fnx ∈ Λ and thus the spaces Ex and Efnx have Lyapunov splittings we can
decompose these polynomial maps into sub-resonance and non sub-resonance terms.
Taking non sub-resonance terms on both sides we obtain the equality

(5.3) Nfnx ◦ F n
x = F n

x ◦Nx
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where Nfnx and Nx denote the non sub-resonance terms in (DfnxHfny)
−1 ◦ G(k)

fnx,fny

and (DxHy)
−1 ◦ G(k)

x,y respectively. If the latter had only sub-resonance terms then so

would G
(k)
x,y, contradicting the assumption. Hence Nx 6= 0. We decompose Nx into

components Nx = (N1
x , ..., N

`
x) and let i be the largest index so that N i

x 6= 0, i.e. there
exists t′ ∈ Ex so that z′ = N(t′) has non-zero component in E iy, which we denote by z′i.
Then by (3.3) we obtain

(5.4) ‖F n
x ◦Nx(t

′)‖fnx = ‖F n
x (z′)‖fnx ≥ en(χi−ε)‖z′i‖x.

Now we estimate the norm of the i component of the left-hand side of (5.3) at t′.
For each componet t′j of t′ we have ‖F n

x (t′j)‖fnx ≤ en(χj+ε)‖t′j‖x by (3.3). Let N s
fnx be

a term of homogeneity type s = (s1, ..., s`) in the component N i
fnx. Then we obtain as

in Lemma 4.2

(5.5) ‖N s
fnx (F n

x (t′)) ‖fnx ≤ ‖Nfnx‖fnx · ‖t′‖kx · en
∑
sj(χj+ε).

For non sub-resonanceN s we have χi >
∑
sjχj and hence (5.5) decays faster than (5.4).

Since there are no sub-resonance terms in N i
fnx, this contradicts (5.3) for large n if ε is

sufficiently small since ‖Nfnx‖fnx is tempered. The latter follows from temperedness

of G
(k)
fnx,fny and the fact that DfnxHfny is Hölder close to the identity and so the norm

of its inverse is bounded in Lyapunov metric.

We conclude that for all x ∈ X and y ∈ Wx the Taylor polynomial Gx,y of Gx,y
contains only sub-resonance terms. Now we will show that Gy,x coincides with its
Taylor polynomial. Again it suffices to consider x ∈ Λ and y ∈ Wx which is sufficiently
close to x. In addition to (5.2) we have the same relation for their Taylor polynomials

(5.6) Gfny,fnx ◦ Pny = Pnx ◦Gy,x.

Indeed, the two sides must have the same terms up to order N , but these are sub-
resonance polynomials and thus have no terms of degree higher than d ≤ N .

Denoting ∆n = Gfny,fnx −Gfny,fnx we obtain from (5.2) and (5.6) that

(5.7) ∆n ◦ Pny = Pnx ◦ Gy,x − Pnx ◦Gy,x.

We denote ∆ = Gy,x − Gy,x : Ey → Ex and suppose that ∆ 6= 0. Let i be the
largest index for which the i component of ∆ is nonzero. Then there exist arbitrarily
small t′ ∈ Ey such that the i component z′i of z′ = ∆(t′) is nonzero. Since Pnx is a
sub-resonance polynomial, the nonlinear terms in its i component can depend only on
j components of the input with j > i, which are the same for Gy,x and Gy,x by the
choice of i. Thus the i component of the right side of (5.7) is F n

x (z′i) since the linear
part of Pnx is F n

x and it preserves the Lyapunov splitting. So by (3.3) we can estimate
the right side of (5.7)

(5.8) ‖ (Pnx ◦ Gy,x − Pnx ◦Gy,x) (t′)‖fnx ≥ ‖F n
x (z′i)‖fnx ≥ en(χi−ε)‖z′i‖x ≥ en(χ1−ε)‖z′i‖x.
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Now we estimate the left side of (5.7). Since Gfny,fnx is CN,α there exists Cn(x)
determined by ‖Gfnx,fny‖CN,α such that

(5.9) ‖∆n(t)‖ ≤ Cn(x) · ‖t‖N+α

for all sufficiently small t ∈ Efnx. To estimate Pny we note that D0Pny = F n
y = Dfn|Ey

and its norm for y close to x can be estimated using Lemma 4.1(3). Then Pny itself can
be estimated as in that lemma:

‖Pny (t)‖ ≤ Ken(χ`+3ε)‖t‖

for all sufficiently small t ∈ Ey. Combining this with (5.9) we obtain

‖
(
∆n ◦ Pny

)
(t′)‖ ≤ Cn(x) · ‖Pny (t′)‖N+α ≤ Cn(x) · (K‖t′‖)N+αen(N+α)(χ`+3ε).

This contradicts (5.7) and (5.8) for large n if ε is sufficiently small. Indeed (N+α)χ` <
χ1 while Cn(x) is tempered and the Lyapunov norm satisfies ‖u‖ ≥ K(x)e−nε‖u‖fnx.
Thus, ∆ = 0, i.e. the map Gy,x coincides with its Taylor polynomial.

This completes the proof of Theorem 2.5. �

5.4. Proof of Corollary 2.6. If d = 1 then all sub-resonance polynomials are linear,
the maps Hy ◦ H−1

x : Ex → Ey are affine, and the family {Hx}x∈X is unique by part
(2) of Theorem 2.3. If we identify Wx with Ex by Hx, then Hy for y ∈ Wx becomes an
affine map Ex → TyEx with identity differential and Hy(y) = 0. Thus it depends CN

on y as the coordinate system Hx is CN . �
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