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Abstract. We construct a diffeomorphism preserving a non-hyperbolic measure
whose pointwise dimension does not exist almost everywhere. In one-dimensional
case we also show that such diffeomorphisms are typical in certain situations.

1. Introduction

We consider an ergodic measure µ invariant under a diffeomorphism f of a com-
pact Riemannian manifold M. Such a measure µ is called hyperbolic if all its
Lyapunov exponents are different from zero. The main goal of this paper is to show
that hyperbolicity of a measure is essential for existence of its pointwise dimension.

We recall that the pointwise dimension at a point x of a Borel measure µ on a
metric space X is defined as the following limit:

dµ(x) = lim
r→0

log µ(B(x, r))

log r
,

where B(x, r) is a ball of radius r centered at x ∈ X. This limit does not exist in
general. However the upper and lower pointwise dimensions dµ(x) and dµ(x) can be
defined at any point x as corresponding upper and lower limits.

The study of pointwise dimension of hyperbolic measures in [3] has led to the prob-
lem known as the Eckmann-Ruelle conjecture. The complete affirmative solution of
this problem was obtained by Barreira, Pesin and Schmeling:

Theorem ([2]). Let f : M → M be a C1+α diffeomorphism of a compact smooth
Riemannian manifold M. If µ is a hyperbolic ergodic measure for f then the point-
wise dimension of µ exists for µ-almost every x ∈ M and is constant.

One may ask what happens if the requirement that µ is hyperbolic is omitted.
The first result along this direction was obtained by Ledrappier and Misiurewicz in
[7]. They constructed an example of a Cr-smooth map of an interval preserving an
ergodic measure with zero Lyapunov exponent whose pointwise dimension does not
exist almost everywhere. For the discussion of the above results see [8].

In this paper we consider circle diffeomorphisms with irrational rotation number
which are known to be uniquely ergodic and have zero Lyapunov exponent.

V. Sadovskaya was partially supported by the National Science Foundation grant DMS9403723.
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In Section 2 we prove genericity of circle diffeomorphisms f with irrational rotation
number whose unique invariant measure µf has lower pointwise dimension 0 and
upper pointwise dimension 1 for µf -almost every point in S1. We also prove density
of circle diffeomorphisms with irrational rotation number and given lower pointwise
dimension of the unique invariant measure.

In Section 3 we show that circle homeomorphisms g with given upper and lower
pointwise dimension of the unique invariant measure µg are dense in the set of all
circle homeomorphisms with any given irrational rotation number.

In Section 4 we prove genericity of analytic circle diffeomorphism f with irrational
rotation number whose unique invariant measure µf has lower pointwise dimension
0 and upper pointwise dimension 1 for µf -almost every point.

Let f be a circle diffeomorphism such that its unique invariant measure µf has
lower pointwise dimension 0 and upper pointwise dimension 1 for µf -almost every
point. Consider the direct product of a volume preserving Anosov diffeomorphism
and f . It is easy to see that we obtain a partially hyperbolic diffeomorphism with
only one zero Lyapunov exponent. The product measure is ergodic with respect to
this diffeomorphism and its pointwise dimension does not exist almost everywhere.
This shows that hyperbolicity of the measure is crucial in the Eckmann-Ruelle con-
jecture.

We would like to thank Anatole Katok and Yakov Pesin for attracting our atten-
tion to this problem and useful discussions.

2. Circle Diffeomorphisms

We adopt the following notation. Denote by Dr
I ⊂ Diff r(S1) the set of all Cr

circle diffeomorphisms with irrational rotation number (see [6] for definition and
properties of rotation number).

Let Y r ⊂ Dr
I be the set of all Cr circle diffeomorphisms f with irrational rotation

number satisfying the following properties:

(1) dµ(x) = 0 and dµ(x) = 1 for µ-a.e. x ∈ S1,

(2) dimH µ = dimBµ = 0 and dimBµ = 1,

where µ is the invariant measure for f .
We recall the following definitions of Hausdorff, upper and lower box dimensions

of a Borel probability measure µ:

dimH µ = inf { dimH X : µ(X) = 1 },
dimBµ = lim

ε→0
inf { dimBX : µ(X) > 1− ε },

dimBµ = lim
ε→0

inf { dimBX : µ(X) > 1− ε }.

(See [4] for definition and properties of Hausdorff and box dimensions).
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Our main results for circle diffeomorphisms are Theorem 2.1, Corollary
2.1, and Theorem 2.2.

Theorem 2.1. For any 0 ≤ r ≤ ∞, Y r is a residual subset of both Dr
I and Dr

I (the
closure of Dr

I in Cr-topology).

Let Dr
τ be the set of all Cr circle diffeomorphisms with rotation number τ .

Corollary 2.1. For any 0 ≤ r ≤ ∞, there exists a set T r ⊂ [0, 1] \ Q which is a
residual subset of [0, 1] such that for any τ ∈ T r, Y r ∩ Dr

τ is a residual subset of
Dr

τ .

Remark 2.1. Recall that a number τ is called Diophantine if it satisfies the
following condition:

there exist δ > 0 and K > 0 such that for any p/q ∈ Q,

| τ − p/q | >
K

|q| 2+δ
.

Let f be a C2+ε circle diffeomorphism, where ε > 0, and its rotation number τ
satisfy the Diophantine condition with some K > 0 and 0 < δ < ε. Then f is
conjugate to the rotation by τ via a C1 diffeomorphism (see [5]). This implies that
the pointwise dimension of the invariant measure for f exists at every point x ∈ S1

and is equal to 1.
Note that for any δ > 0 the set of all numbers satisfying the Diophantine condition

with some K > 0 has full Lebesgue measure. Therefore, the set T r has zero Lebesgue
measure for any r > 2. One can also show that dimH T r ≤ 2/r for any 2 < r < ∞,
and dimH T∞ = 0.

The following theorem shows that any given number β, 0 < β < 1, can be
the value of the lower pointwise dimension of the invariant measure for a circle
diffeomorphism.

Theorem 2.2. For any given 0 < β < 1 and 0 ≤ r ≤ ∞ the set of all Cr circle
diffeomorphisms f with irrational rotation number satisfying the following properties:

(1) dµ(x) = β and dµ(x) = 1 for µ-a.e. x ∈ S1;

(2) dimH µ = dimBµ = β and dimBµ = 1,

is a dense subset of Dr
I .

Note that the set of diffeomorphisms described in Theorem 2.2 is not residual.

We begin with a construction of a uniquely ergodic circle diffeomorphism which
is close to a given diffeomorphism and whose invariant measure µ does not have
pointwise dimension almost everywhere. Our construction is closely related to the
construction in [6] of circle diffeomorphisms conjugated to rotations via maps with
specific degrees of regularity. The latter construction is based on a method developed
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by D. Anosov and A. Katok in [1] to construct examples of diffeomorphisms with
specific ergodic properties.

Proposition 2.1. Let f∗ : S1 → S1 be a C∞ circle diffeomorphism such that f∗ =
h−1
∗ ◦ Rτ∗ ◦ h∗, where h∗ is a C∞ circle diffeomorphism and Rτ∗ is a circle rotation

by τ∗.
Then in any C∞ neighborhood of f∗ there exists a C∞ diffeomorphism f : S1 →

S1 with irrational rotation number such that for its unique invariant measure µ,
dµ(x) = 0 and dµ(x) = 1 for µ-a.e. x ∈ S1.

Proof. The desired diffeomorphism f will be obtained as a limit of a sequence of
diffeomorphisms fn = h−1

n ◦Rτn ◦ hn, where τn = pn/qn is a rational number and hn

is a C∞ diffeomorphism of S1.
The sequences τn and hn will be defined inductively as follows. We take h0 = h∗

and a rational number τ0 close to τ∗. Once τn−1 = pn−1/qn−1 and hn−1 are chosen
we construct hn as the composition hn = An ◦ hn−1. The diffeomorphism An will
be constructed in the form An = Id + an, where Id is the identity map and an is
a 1/qn−1-periodic C∞ function on S1 such that an is zero in disjoint neighborhoods
of points k/qn−1, k = 1, ..., qn−1. A particular choice of An will be described later.
Once An is constructed we choose τn in the form τn = τn−1 + (1/Knqn−1), where
Kn is an integral number. We choose Kn large enough as follows to ensure C∞

convergence of diffeomorphisms fn and C0 convergence of diffeomorphisms hn.
The C0 distance between hn and hn−1 (and between h−1

n and h−1
n−1) is bounded by

1/qn−1, the period of an. Therefore the sequence of diffeomorphisms hn converges in
C0 topology to a homeomorphism h = limn→∞ hn if the sequence qn grows sufficiently
fast. This can be easily ensured by choosing Kn large enough.

Since Rpn−1/qn−1 and A−1
n commute due to the form in which An is constructed we

can rewrite fn in the following way:

fn = h−1
n ◦Rτn ◦ hn = h−1

n−1 ◦ A−1
n ◦Rpn−1/qn−1 ◦R1/Knqn−1 ◦ An ◦ hn−1 =

= h−1
n−1 ◦Rpn−1/qn−1 ◦ A−1

n ◦R1/Knqn−1 ◦ An ◦ hn−1.

So we see that given a map An in the described form we can choose Kn so large
that the map A−1

n ◦R1/Knqn−1 ◦An is close to Id in C∞. It follows that we can make
fn be as close to fn−1 in C∞ as we wish. This allows us to choose any An within
described restrictions and then choose Kn so that the sequence fn converges in C∞

and its limit f is as close to f0 as we wish. Taking τ0 close to τ∗ we can make f
close to f∗.

Note that for the diffeomorphism f the rotation number τ = limn→∞ τn is irra-
tional once Kn grow to infinity. Indeed, suppose that τ = p/q ∈ Q. Then

τ − τn = p/q − pn/qn =
pqn − qpn

qqn

≥ 1

qqn

.
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On the other hand,

τ − τn =
∞∑
i=1

1

qnKn+1 . . . Kn+i

≤ 1

qn

∞∑
i=1

1

K i
n+1

=
1

qn(Kn+1 − 1)
,

which contradicts the previous estimate if n is sufficiently large.

We now specify the choice of An. Let µ be the invariant measure for f . We note
that h is the distribution function of µ, i.e. µ([x1, x2)) = h(x2) − h(x1) for any
interval [x1, x2) ⊂ S1. Let ∆h(x, r) = h(x + r)− h(x− r). Then

dµ(x) = lim sup
r→0

log ∆h(x, r)

log r
and dµ(x) = lim inf

r→0

log ∆h(x, r)

log r
.

We think of An and an as C∞ functions on the unit interval. Recall that an is
periodic with period sn = 1/qn−1 and An is monotone. We would like to concentrate
most of the growth of An on a set Ẽn =

⋃qn−1

i=1 I i
n, where I i

n is a subinterval of
( (i− 1)/qn−1, i/qn−1 ) of length dn. More precisely, we choose An such that on each
I i
n it is linear with the slope d−1

n sn(1− 2−n).
Let En be the preimage of Ẽn under hn−1. Then hn(En) = An(Ẽn) and hence

(1n) µn(En) > 1− 2−n,

where µn is the measure with the distribution function hn.

Now we will show how to choose a length dn and two ”scales” rn and r̃n, n ≥ 0,
such that

(2n)
log ∆hn(x, rn)

log rn

<
1

n
for any x ∈ En,

(3n)
log ∆hn(x, r̃n)

log r̃n

> 1− 1

n
for any x ∈ [0, 1].

This means that for the measure µn the pointwise dimension ”on the scale rn” is
less than 1/n on a set of µn-measure at least 1− 2−n, and ”on the scale r̃n” it is at
least 1− 1/n.

Let us introduce the following notations:

mn−1 = min
[0,1]

h′n−1 and Mn−1 = max
[0,1]

h′n−1

Note that the set En consists of qn−1 intervals whose lengths are bounded above by
dn/mn−1. It follows that for rn = dn/mn−1 and any x ∈ En,

log ∆hn(x, rn)

log rn

≤ log (sn(1− 2−n))

log dn − log mn−1

−→
dn→0

0,

So we can take dn so small that (2n) holds. This completes the description of the
choice of dn and rn and the construction of An.
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Note that ∆hn(x, r) ≤ 2rMn. This implies that

log ∆hn(x, r)

log r
≥ 1 +

log(2Mn)

log r
.

Since log(2Mn)/ log r → 0 as r → 0, there exists r̃n satisfying (3n).

The distance between hn and h is bounded by
∑∞

i=n 1/qi. Since Ki, i ≥ n, can
be taken as large as we wish we may assume that h is so close to hn in C0 topology
that the following properties hold true for the limit function h:

(1′n) µ(En) > 1− 2−n+1,

(2′n)
log ∆h(x, rn)

log rn

<
2

n
for any x ∈ En,

(3′n)
log ∆h(x, r̃n)

log r̃n

> 1− 2

n
for any x ∈ [0, 1].

Thus for any n > 0 there exists a set En and two ”scales” rn and r̃n satisfying
(1′n)− (3′n). Obviously rn, r̃n → 0 as n →∞.

Take x ∈ [0, 1]. If for any N > 0 there exist n > N such that x ∈ En, then
dµ(x) = 0 and dµ(x) ≥ 1.

Otherwise, x ∈ J =
⋃∞

m=1

⋂∞
n=m([0, 1] \ En). However µ(

⋂∞
n=m([0, 1] \ En)) = 0

by (2′n). Hence µ(J) = 0 and we conclude that for µ-almost all x ∈ S1, dµ(x) = 0

and dµ(x) ≥ 1.

It remains to note that dµ(x) ≤ 1 µ-almost everywhere. This fact is probably well
known and we include the following Lemma for the sake of completeness.

Lemma 2.1. Let µ be a Borel probability measure on S1. Then dµ(x) ≤ 1 for
µ-a.e. x ∈ S1

Proof. The function dµ(x) is measurable. If dµ(x) > 1 on a set of positive mea-
sure then there exists δ > 0 and a set X ⊂ S1 of positive measure such that
dµ(x) ≥ 1 + 2δ for all x ∈ X. It follows from the definition of the upper point-
wise dimension that for any ε > 0 and any x ∈ X there exists r(x) ≤ ε such that
µ(B(x, r(x))) ≤ r(x)1+δ, where B(x, r(x)) is the interval in S1 centered at x of
length 2r(x). Since X ⊂

⋃
x∈X B(x, 1

4
r(x)) ⊂ S1, by the Vitalie Covering Lemma

there exists at most countable subset {xn}n≥1 of X such that X ⊂
⋃

n B(xn, r(xn))
and the balls B(xn,

1
4
r(xn)) are disjoint. Then

µ(X) ≤
∑

n

µ(B(xn, r(xn))) ≤
∑

n

r(xn)1+δ ≤ εδ
∑

n

r(xn)

and hence ∑
n

1

4
r(xn) ≥ µ(X)

4εδ
> 1
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for ε sufficiently small. This contradicts the fact that B(xn,
1
4
r(xn)) are disjoint

intervals in S1. �

It follows that dµ(x) = 1 for µ-a.e. x ∈ S1. This completes the proof of Proposi-
tion 2.1. �

We now construct a C∞ circle diffeomorphism f with irrational rotation number
such that for its unique invariant measure µ, the lower pointwise dimension is equal
to a given number β, 0 < β < 1, and the upper pointwise dimension is equal to 1
µ-almost everywhere.

Proposition 2.2. Let f∗ : S1 → S1 be a C∞ circle diffeomorphism such that f∗ =
h−1
∗ ◦ Rτ∗ ◦ h∗, where h∗ is a C∞ circle diffeomorphism and Rτ∗ is a circle rotation

by τ∗.
Given β, 0 < β < 1, in any C∞ neighborhood of f∗ there exists a C∞ diffeomor-

phism f : S1 → S1 with irrational rotation number τ such that

(1) f is conjugate to the rotation Rτ ;
(2) the conjugacy map h is Hölder continuous with Hölder exponent β;
(3) if µ is the invariant measure for f then dµ(x) = β and dµ(x) = 1 for µ-a.e.

x ∈ S1.

Proof. We follow the same approach as in the proof of Proposition 2.1 but we would
like to make log ∆hn(x, rn)/ log rn close to β rather than to 0. For this we make the
following modifications.

We choose the period sn of the function an smaller than 1/qn−1 in the form

sn = 1/lnqn−1. Then we take Ẽn =
⋃lnqn

i=1 I i
n, where I i

n is a subinterval of ( (i −
1)/lnqn−1, i/lnqn−1 ) of length dn. We again concentrate most of the growth of An

on Ẽn. We take An to be linear on each interval I i
n with the slope d−1

n sn(1 − 2−n).
We may also assume that sn/dn is the upper bound for the derivative of An. Let us
again introduce the following notations:

mn−1 = min
[0,1]

h′n−1 and Mn−1 = max
[0,1]

h′n−1

The preimage En of Ẽn under hn−1 consists of lnqn−1 intervals whose lengths are
bounded above by dn/mn−1 and below by dn/Mn−1. Then for any x ∈ En and
rn = dn/mn−1 we have

∆hn(x, rn) ≥ sn(1− 2−n) and ∆hn(x, rn) ≤ sn

dn

·Mn−1 · 2rn = 2sn
Mn−1

mn−1

,

where ∆hn(x, rn) = hn(x + r)− hn(x− r). Hence

log sn

log rn

+
log (2Mn−1/mn−1)

log rn

≤ log ∆hn(x, rn)

log rn

≤ log sn

log rn

+
log (1− 2−n)

log rn

.
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We note that the error terms

log (2Mn−1/mn−1)

log rn

and
log (1− 2−n)

log rn

are small once dn is chosen so small that rn = dn/mn−1 is small enough. Now we
can choose dn small and ln large to satisfy the following properties

(1) The absolute values of the error terms are less then 1
n
;

(2) (log sn)/(log rn) = β + 1
n
;

(3) rn ≤ (Mn−1 + 1)−n, rn ≤ (mn−1/Mn−1)
n, sn ≤ 2−(n+1)sn−1,

where sn = 1/lnqn−1.
The third property will be used to prove Hölder continuity of h.
So we conclude that for any x ∈ En

β <
log ∆hn(x, rn)

log rn

< β +
2

n
.

This means that for the measure µn the pointwise dimension ”on the scale rn” is
about β on a set of large µn-measure.

Now it follows in the same way as in the previous proposition that dµ(x) ≤ β and

dµ(x) = 1 for µ-a.a. x ∈ S1, where µ is the unique invariant measure for f .
It remains to show that dµ(x) ≥ β. Recall that h = lim hn is the distribution

function of µ.

Lemma 2.2. h is Hölder continuous with the exponent β.

Proof. It suffices to show that |hn(x)−hn(y)| ≤ C|x−y|β for all x, y ∈ S1 and n ≥ 0.
We will prove by induction that for all n ≥ 0 hn has the following properties:

(i) |hn(x)− hn(y)| ≤ |x− y|β for all x, y ∈ S1 with |x− y| ≤ sn;

(ii) |hn(x)− hn(y)| ≤ (4− 2−n)|x− y|β for all x, y with |x− y| ≥ sn.

For h0 = Id this holds true. We now show that hn has properties (i) and (ii) provided
that hi with i < n do. If |x− y| ≤ rn then

|hn(x)−hn(y)| ≤ sn

dn

Mn−1|x−y| ≤ r
β+ 1

n
n

rnmn−1

Mn−1|x−y| ≤≤ Mn−1

mn−1

|x−y|β+ 1
n ≤ |x−y|β

since |x− y| 1n ≤ r
1
n
n ≤ mn−1/Mn−1 by the choice of dn. If rn ≤ |x− y| ≤ sn then

|hn(x)− hn(y)| ≤ sn(Mn−1 + 1) = r
β+ 1

n
n (Mn−1 + 1) ≤ |x− y|β

since r
1
n
n ≤ (Mn−1 + 1) again by the choice of dn, and |An(x) − An(y)| ≤ sn if

|x− y| ≤ sn. So we conclude that hn has property (i). If sn ≤ |x− y| ≤ sn−1 then

|hn(x)− hn(y)| ≤ 2sn + |hn−1(x)− hn−1(y)| ≤ 2sn + |x− y|β ≤ 3|x− y|β.
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If sn−1 ≤ |x− y| then

|hn(x)−hn(y)| ≤ 2sn+|hn−1(x)−hn−1(y)| ≤ 2sn+(4−2−n+1)|x−y|β ≤ (4−2n)|x−y|β

since 2sn ≤ 2−nsn−1 by the choice of ln.
So we conclude that hn has also property (ii). This completes the proof of the

lemma. �

Lemma 2.2 implies that dµ(x) ≥ β for all x ∈ S1. This completes the proof of
Proposition 2.2. �

Now we will prove Theorem 2.1 using the construction in Proposition 2.1.

Proof. Let f̃ ∈ Dr
I . In any Cr-neighborhood of f̃ there exists a C∞ diffeomorphism

f∗ with a Diophantine rotation number. Such diffeomorphisms are known to be
C∞-conjugate to corresponding rotations, i.e. f∗ = h−1

∗ Rτ∗h∗, where h∗ is a C∞

circle diffeomorphism (see [5]). f∗ can be used as a starting point for a sequence of
iterations fn constructed as in the proof of Proposition 2.1. Then the sequence fn

converges in Cr-topology to some diffeomorphism f which can be made as close to
f∗ as we wish and satisfies the following condition:

for any n > 0 there exists a set En with µ(S1 \En) < 2−n+1 and positive numbers
rn > r̃n such that

log µ(B(x, rn))

log rn

<
2

n
for any x ∈ En,

log µ(B(x, r̃n))

log r̃n

> 1− 2

n
for any x ∈ S1,

where µ is the unique invariant measure for f , and rn, r̃n ≤ 1
n
. So we see that Dr

I

contains a dense subset Z of diffeomorphisms satisfying the above condition.
For any diffeomorphism f ∈ Z we can construct a sequence of its neighborhoods,

{V f
n }∞n=1, such that any uniquely ergodic diffeomorphism g in V f

n satisfies the con-
dition

log ν(B(x, rn))

log rn

<
3

n
for any x ∈ En,

log ν(B(x, r̃n))

log r̃n

> 1− 3

n
for any x ∈ S1,

where ν is the unique invariant measure for g, En, rn and r̃n are the same as for
f , and ν(S1 \ En) < 2−n+2. Indeed, if f and g are sufficiently close in C0-topology,
their invariant measures are sufficiently close in the week topology.

Let Y r
0 =

⋂∞
n=1

⋃
f∈Z V f

n . Then Y r
0 ∩Dr

I and Y r
0 ∩Dr

I are residual subsets of Dr
I

and Dr
I respectively.



ON POINTWISE DIMENSION OF NON-HYPERBOLIC MEASURES 10

Any uniquely ergodic diffeomorphism g in Y r
0 satisfies the above condition for some

sequence of scales {rn} and {r̃n} which converge to 0. It follows that dν(x) = 0,
dν(x) = 1 for ν-a.a. x ∈ S1.

It is easy to see that the set En can be covered by 1/sn balls of radius rn (recall
that sn is the the period of the function an; see the proof of Proposition 2.1). Since
log sn/ log rn → 0 as n → ∞ we see that dimB(

⋂∞
n=k En) = 0 for any k > 0. Since

ν(
⋂∞

n=k En) > 1− 2−n+3 → 1 we conclude that dimBν = 0.

On the other hand, since ν(B(x, r̃n)) < r̃
1− 3

n
n for any x ∈ S1 the minimal number

N of balls of radius needed to cover a set of ν measure 1−ε is at least (1−ε) r̃
−(1− 3

n
)

n .
Hence

log N

− log r̃n

≥ 1− 3

n
+

log(1− ε)

− log r̃n

−→
n→∞

1

and we conclude that dimBν ≥ 1. Since

0 ≤ dimH ν ≤ dimBν ≤ dimBν ≤ 1

for any finite measure on S1 we see that

dimH ν = dimBν = 0 and dimBν = 1.

We conclude that any uniquely ergodic diffeomorphism g in Y r
0 lies in Y r. Since

the set of the diffeomorphisms in Dr
I which are not uniquely ergodic is of the first

category, we conclude that Y r is a residual subset in both Dr
I and Dr

I .
�

The proof of Theorem 2.2 uses Proposition 2.2 and follows the corresponding steps
of the proof of Theorem 2.1 almost identically. The lower bound for the Hausdorff
dimension of the measure is provided in this case by the following fact (see [8]): if
dµ(x) ≥ β for µ-a.a. x then dimH µ ≥ β.

We now complete the section with the proof of Corollary 2.1.

Proof. It suffices to show that for any open and dense subset U ⊂ Dr
I there exists a

residual subset T ⊂ [0, 1] such that for any τ ∈ T the intersection U ∩ Dr
τ is open

and dense in Dr
τ . Since U ∩ Dr

τ is open in the induced topology we only need to
check whether it is dense.

Let us suppose that there exists a subset S ⊂ [0, 1] of the second category such
that for any τ ∈ S the intersection U ∩ Dr

τ is not dense in Dr
τ . In other words

for any τ ∈ S there exist fτ ∈ Dr
τ and rτ > 0 such that B(fτ , rτ ) ∩ Dr

τ ∩ U = ∅,
where B(fτ , rτ ) is the ball in Dr centered at fτ of radius rτ . Then for some ε > 0
there exists S1 ⊂ S of the second category in [0, 1] such that rτ > 3ε for all τ ∈ S1.
Since Dr

I is second countable there exists a countable ε-spanning set {gn} ⊂ Dr
I .

Then for some i > 0 there exists S2 ⊂ S1 of the second category in [0, 1] such that
fτ ∈ B(gi, ε) for all τ ∈ S2. Set I = τ(B(gi, ε)) and by Iu = τ(B(gi, ε)) ∩ U , where
τ : Dr → [0, 1] is the rotation number function. We obtain S2 ⊂ I and S2 ∩ Iu = ∅
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since for all τ ∈ S2 we have B(fτ , 3ε) ∩ Dr
τ ∩ U = ∅ and fτ ∈ B(gi, ε) whence

B(gi, ε) ∩Dr
τ ∩ U = ∅. We note that Iu is open in I \Q and I \ Iu is of the second

category in I since S2 is. We conclude that I \ Iu has nonempty interior. It follows
that there exists an interval Is ⊂ I such that Is ∩ Iu = ∅. This implies that the set
τ−1(Is) ∩ B(gi, ε) ∩Dr

I is open in Dr
I and does not intersect U . This contradicts to

the fact that U is dense and completes the proof of the corollary.
�

3. Circle Homeomorphisms

In the previous section we have shown that for a circle diffeomorphism we can
make the lower pointwise dimension of its invariant measure µ equal to any number
between 0 and 1. We do not know whether there exists a circle diffeomorphism such
that dµ(x) = γ < 1 for µ-a.e. x ∈ S1. However we can obtain such pinching in the
case of Hölder circle homeomorphisms. Moreover, we can construct Hölder circle
homeomorphisms such that the pointwise dimension exists almost everywhere and
is equal to a given number α, 0 < α < 1. We show that such homeomorphisms
are dense in the set of all circle homeomorphisms with a given irrational rotation
number.

Denote by Hτ , τ ∈ [0, 1] \ Q, the set of all homeomorphisms of S1 with rotation
number τ .

Theorem 3.1.
(1) For any β, γ, 0 < β < γ ≤ 1, the set of all Hölder homeomorphisms whose

invariant measure has lower pointwise dimension equal to β and upper pointwise
dimension equal to γ for a.e. x ∈ S1 is everywhere dense in Hτ .

(2) For any α ∈ (0, 1] the set of all Hölder homeomorphisms whose invariant
measure has pointwise dimension α for a.e. x ∈ S1 is everywhere dense in Hτ .

The proof of Theorem 3.1 is based on the following proposition.

Proposition 3.1.
(1) For any β, γ such that 0 < β < γ ≤ 1 the set of all Borel probability measure

µ on S1 such that dµ(x) = β and dµ(x) = γ for µ-a.e. x ∈ S1 is everywhere dense
(in the week topology) in the set of all Borel probability measures on S1.

(2) For any α ∈ (0, 1] the set of all Borel probability measures ν on S1 such that
dν(x) = α for ν-a.e. x ∈ S1 is everywhere dense in the set of all Borel probability
measures on S1.

Proof. To obtain measures with desired properties on S1 we first construct their
counterparts on the symbolic space

Ω2 = {ω = (ω0ω1 . . . ) : ωi ∈ {0, 1}, i ∈ N0}.
Then we use the binary coding of the unit interval to carry the measures to S1.
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(1) Let us fix β and γ such that 0 < β < γ ≤ 1 and take the numbers p, q, p̃, q̃
such that

0 < p ≤ q < 1, p + q = 1, p log p + q log q = β log
1

2
,

0 < p̃ ≤ q̃ < 1, p̃ + q̃ = 1, p̃ log p̃ + q̃ log q̃ = γ log
1

2
.

Let
s0

n = p, s1
n = q for 2(2k)! ≤ n < 2(2k+1)!

s0
n = p̃, s1

n = q̃ for 2(2k+1)! ≤ n < 2(2k+2)!.

For any cylinder Cωm...ωn we set µ̂ (Cωm...ωn) =
∏n

i=m sωi
i .

Consider the independent random variables

ξi =


log p, if ωi = 0 and 2(2k)! ≤ i < 2(2k+1)!

log q, if ωi = 1 and 2(2k)! ≤ i < 2(2k+1)!

log p̃, if ωi = 0 and 2(2k+1)! ≤ i < 2(2k+2)!

log q̃, if ωi = 1 and 2(2k+1)! ≤ i < 2(2k+2)!

Denote the expectation and the dispersion of ξi by Ai and Di respectively. We have
that

Ai =

∫
Ω2

ξi dµ =

{
β log 1

2
if 2(2k)! ≤ i < 2(2k+1)!

γ log 1
2

if 2(2k+1)! ≤ i < 2(2k+2)!;

Di =

∫
Ω2

|ξi − Ai|2 dµ.

One can see that Di is bounded by a constant independent of i. Therefore
∑∞

i=0 i−2Di <
∞, and the Law of Large Numbers yields:

lim
n→∞

(
1

n

n−1∑
i=0

ξi(ω)− 1

n

n−1∑
i=0

Ai

)
= 0 for µ̂-a.e. ω ∈ Ω2,

in particular,

lim inf
n→∞

(
1

n

n−1∑
i=0

ξi(ω)

)
= lim inf

n→∞

(
1

n

n−1∑
i=0

Ai

)
= β log

1

2
,

lim sup
n→∞

(
1

n

n−1∑
i=0

ξi(ω)

)
= lim sup

n→∞

(
1

n

n−1∑
i=0

Ai

)
= γ log

1

2

for µ̂-a.e. ω ∈ Ω2. It follows that for µ̂-a.e. ω ∈ Ω2

lim inf
n→∞

1
n

log µ̂(Cω0...ωn−1)

log 1
2

= lim inf
n→∞

1
n

∑n−1
i=0 ξi(ω)

log 1
2

= β,
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lim sup
n→∞

1
n

log µ̂(Cω0...ωn−1)

log 1
2

= γ.

Let us consider the binary coding φ : Ω2 → [0, 1] of the interval [0, 1]. Recall
that each number has at most two binary expansions and any irrational number has
exactly one.

Fix a measure κ0 on S1. Consider a measure κ with no atoms which is positive
on open intervals and close to κ0 in the week topology. Let κ̂ be its pull back to Ω2

by φ.
Fix n ∈ N. For any cylinder Cω0...ωm set

κ̂j(Cω0...ωm) =

{
κ̂(Cω0...ωm), if m < j

κ̂(Cω0...ωn−1) · µ̂(Cωn...ωm), if m ≥ j

where µ̂ is the measure constructed above. It is easy to see that for any j we have
that

lim inf
n→∞

1
n

log κ̂j(Cω0...ωn−1)

log 1
2

= β, lim sup
n→∞

1
n

log κ̂j(Cω0...ωn−1)

log 1
2

= γ

for κ̂j-a.e. ω ∈ Ω2.
Let us denote by κj the push forward of κ̂j to [0, 1] by φ. Clearly, the measure κj

is close to κ for large j, positive on open intervals and has no atoms. To complete
the proof of the second statement of the proposition it remains to prove the following
lemma.

Lemma 3.1. dκj
(x) = β and dκj

= γ for κj-a.e. x ∈ S1.

Proof. Note that φ(Cω0...ωn−1) is one of 2n closed binary intervals of length 2−n. So
we see that φ−1(B(x, 2−n)) ⊃ Cω0...ωn+1 for any x ∈ S1, where φ(ω0ω1 . . . ) = x. It
follows that, for κj-a.e. x ∈ S1

dκj
(x) = lim inf

n→∞

log κj(B(x, 2−n))

log 2−n
≤ lim

n→∞

log κ̂j(Cω0...ωn+1)

n log 1
2

= lim
n→∞

(
n + 2

n
·
log κ̂j(Cω0...ωn+1)

(n + 2) log 1
2

)
= β,

dκj
(x) = lim sup

n→∞

log κj(B(x, 2−n))

log 2−n
≤ lim

n→∞

log κ̂j(Cω0...ωn+1)

n log 1
2

= γ.

To obtain the below estimates we introduce the following sets

Bk =
2k⋃
i=1

[
i

2k
− 1

2k+[
√

k]
,

i

2k
+

1

2k+[
√

k]

]
⊂ S1 and Gm = S1 \ (

∞⋃
k=m

Bk).
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It is easy to see that for any x ∈ Gm and any n > m, we have

φ−1(B(x, 2−(n+[
√

n]))) ⊂ Cω0...ωn−1 .

Hence, for κj-a.e. x ∈ Gm,

dκj
(x) = lim inf

n→∞

log κj(B(x, 2−(n+[
√

n])))

log 2−(n+[
√

n])
≥ lim

n→∞

log κ̂j(Cω0...ωn−1)

(n + [
√

n]) log 1
2

= lim
n→∞

(
n

n + [
√

n]
·
log κ̂j(Cω0...ωn−1)

n log 1
2

)
= β,

dκj
(x) = lim sup

n→∞

log κj(B(x, 2−(n+[
√

n])))

log 2−(n+[
√

n])
≥ lim

n→∞

log κ̂j(Cω0...ωn−1)

(n + [
√

n]) log 1
2

= γ.

For any k > j we observe that κj(Bk) ≤ 2q
√

n, where q < 1 is from the construction
of the measure ν̂. Hence, κj(Gm) ↗ 1 as m → ∞. It follows that dκj

≥ β and

dκj
≥ γ for κj-a.e. x ∈ S1, and this completes the proof of the lemma. �

This completes the proof of the first statement.

(2) Let us fix α ∈ (0, 1] and take the numbers p and q such that

0 < p ≤ q < 1, p + q = 1 and p log p + q log q = α log
1

2
.

Let us consider the Bernoulli measure ν = ν(p, q) on Ω2 which is defined as follows:
for any cylinder

Cωm...ωn = {ω′ ∈ Ω2 : ω′i = ωi, m ≤ i ≤ n },

ν̂ (Cωm...ωn) =
∏n

i=m sωi
i , where s0

i = p and s1
i = q.

This measure is ergodic with respect to the shift σ. Clearly, it has no atoms and
is positive on any cylinder.

Consider the function

g(ω) =

{
log p, if ω0 = 0

log q, if ω0 = 1

By the Birkhoff ergodic theorem

lim
n→∞

1

n

n−1∑
i=0

g(σi(ω)) =

∫
Ω2

g dν̂ = p log p + q log q for ν̂-a.e. ω ∈ Ω2.

This implies that for ν̂-a.e. ω ∈ Ω2,

lim
n→∞

1
n

log ν̂(Cω0...ωn−1)

log 1
2

=
p log p + q log q

log 1
2

= α.
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We now use the measure ν̂ in to modify a given measure κ0 in the same way
as we used µ̂ in the proof of the first statement, and the rest of the proof follows
similarly. �

Now we will prove Theorem 3.1.

Proof. Fix an irrational rotation number τ and consider a diffeomorphism f̃ ∈ Hτ . In
any neighborhood of f̃ there exists a C2 circle diffeomorphism f∗ with an irrational
rotation number. By the Denjoy Theorem it is conjugate to the corresponding
rotation: f∗ = h−1

∗ ◦ Rτ∗ ◦ h∗. Consider the homeomorphism f0 = h−1
∗ ◦ Rτ ◦ h∗. It

is close to f̃ and has the same rotation number.
(2) Let κ0 be the invariant measure for f0. Consider a sequence of measures κj

without atoms and positive on open intervals which have pointwise dimension equal
to α for κj-a.a. x ∈ S1 and weekly converge to κ (constructed as in Proposition 3.1).
Let hn be the distribution function of κj and fn = h−1

n ◦Rτ ◦ hn. Then it is easy to
see that fn converge uniformly to f0 and f−1

n converge uniformly to f−1
0 .

Lemma 3.2. The homeomorphisms fn constructed above are Hölder continuous with
Hölder exponent log q/2 log p.

Proof. Let A and B be binary intervals, |A| = 2−m, |B| = 2−k, such that κj(A) ≤
κj(B). We will show that m/k ≥ log q/2 log p i.e. |A| ≤ |B|

log q
2 log p .

Recall that φ−1(A) = Cω0...ωm−1 and φ−1(B) = Cω′0...ω′k−1
for some (ω0 . . . ωm−1)

and (ω′0 . . . ω′k−1) (up to countably many elements). We can assume that m, k > n.
Then

κ̂j(Cω0...ωm) = κ̂(Cω0...ωn−1)
m−1∏
i=n

sωi
i ≤ κ̂(Cω′0...ω′n−1

)
k−1∏
j=n

s
ω′j
j = κ̂j(Cω′0...ω′m).

Let

Mn = max
κ̂(Cω0...ωn)

κ̂(Cω′0...ω′n)
,

where maximum is taken over all cylinders of length n + 1. The ratio m/k is the

smallest when sωi
i = p, i = n, . . . , m − 1 and s

ω′j
j = q, j = n, . . . k − 1. Therefore

pm−n ≤ Mqk−n and

m

k
≥ log q

log p
+

log M + n log(p/q)

k log p
≥ log q

2 log p

if k is big enough.
Let I be an interval, A ⊂ I be a binary interval (i.e. the image of a cylinder in

Ω2 under φ) of the largest possible length and B ⊃ fn(I) a binary interval of the
smallest possible length. Then κj(A) = κj(fn(A)) ≤ κj(fn(I)) ≤ κj(B). Hence

|I| ≤ 2|A| ≤ 2|B|
log q

2 log p ≤ 2(2|fn(I)|)
log q

2 log p = 2
log q

2 log p
+1|fn(I)|

log q
2 log p .
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The same argument shows that |fn(I)| ≤ 2
log q

2 log p
+1|I|

log q
2 log p . �

This completes the proof of the second part of the theorem. The first part can be
proven similarly. �

4. Analytic Circle Diffeomorphisms

Let us fix an annulus A ⊂ C containing S1 and denote by D ω = D ω(A) ⊂
Diffω(S1) the set of all orientation-preserving circle diffeomorphisms f such that f
and f−1 extend to analytic functions on A. We endow D ω with the topology of
uniform convergence on compact subsets of A. Denote by D ω

I the subset of D ω

consisting of all diffeomorphisms with irrational rotation number.
Let Y ω be the subset of D ω

I consisting of diffeomorphisms f such that

(1) dµ(x) = 0 and dµ(x) = 1 for µ-a.a. x ∈ S1,

(2) dimH µ = dimBµ = 0 and dimBµ = 1,

where µ is the invariant measure for f . The following statements are analytic coun-
terparts of Theorem 2.1 and Corollary 2.1.

Theorem 4.1. Y ω is a residual subset of both D ω
I and D ω

I .

The proof of Theorem 4.1 is based on Propositions 4.2 and 4.3 below.

Let D ω
τ be the set of all diffeomorphisms in D ω with rotation number τ .

Corollary 4.1. There exists a set T ω ⊂ [0, 1] \Q which is a residual subset of [0, 1]
such that for any τ ∈ T ω, Y ω ∩D ω

τ is a residual subset of D ω
τ .

Proof. The proof is identical to the proof of Corollary 2.1. �

Remark 4.1. The set T ω has zero Lebesgue measure and zero Hausdorff dimension
(compare to Remark 2.1).

We have a natural projection π : R → S1 = R/Z. This provides a lift of a
diffeomorphism f : S1 → S1 to a diffeomorphism F : R → R such that f ◦π = π◦F .

Let f be an analytic orientation-preserving diffeomorphism. We say that f satis-
fies the property (?) if for any α ∈ [0, 1], no power of the diffeomorphism

fα = f + α (mod 1)

is the identity map.

The following proposition proves the existence of diffeomorphisms satisfying the
property (?).

Proposition 4.1. Let f : S1 → S1 be an orientation-preserving diffeomorphism
such that it is not a rotation and its lift F : R → R extends to an entire function.
Then f satisfies the property (?).
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Proof. Suppose f q
α = Id for some q ∈ N and α ∈ [0, 1]. Then F q

α = Id + p on C for
some p ∈ Z. This implies that F : C → C is a bijection. Since F is entire it must
be a liner function. It follows that the diffeomorphism f is a rotation. �

The following proposition shows that property (?) diffeomorphisms are typical.

Proposition 4.2. The diffeomorphisms in D ω
I satisfying the property (?) form a

residual subset of D ω
I .

The following proof was given by Keith Burns.

Proof. We will prove that the set

{ f ∈ D ω
I : fn

α 6= Id for all α ∈ [0, 1] and n ≥ 1 }

is a residual subset of D ω
I . It suffices to show that for every n ≥ 1 the set

Gn = { f ∈ D ω
I : fn

α 6= Id for all α ∈ [0, 1] }

is open and dense in D ω
I .

Fix n ≥ 1. It is easy to see that the complement of Gn is closed so it is enough
to check that Gn is dense in D ω

I . Let U ⊂ D ω
I be an open set. We will show that

U ∩ Gn 6= ∅. Let us take a diffeomorphism f ∈ U with irrational rotation number
and suppose that f /∈ Gn.

Let F be a lift of f , then Fα = F + α is a lift of fα. The equality fn
α = Id is

equivalent to F n
α = Id + p for some p ∈ Z. Since F n

α (x) is increasing in α there are
only finitely many values of α in [0, 1] for which fn

α = Id. Let us denote these values
by α1, . . . , αk.

Let E = [0, 1] \ (I1 ∪ · · · ∪ Ik), where Ij, j = 1, . . . , k, are open intervals centered
at αi of length (max(2, sup |f ′|))−(n+1). Since fn

α 6= Id for any α ∈ E there exists a
neighborhood U0 ⊂ U of f such that gn

α 6= Id for any g ∈ U0 and any α ∈ E.

Lemma 4.1. Let f ∈ D ω
I be such that Fα = Id + p for some p ∈ Z and α ∈ [0, 1].

Then in any neighborhood of f there exists f̃ ∈ D ω
I such that for its lift F̃ ,

F̃ n
α (x′) < x′ + p and F̃ n

α (x′′) > x′′ + p

for some x′, x′′ ∈ R.

Proof. Let us fix x ∈ S1 and consider its orbit x, fx, ..., fmx, where m + 1 is the
minimal period of x. There exists an analytic flow φt on S1 for which x, fx, ..., fmx
are repelling fixed points. In other words, for t > 0, 1 ≤ i ≤ m, and for all y
sufficiently close to f ix we have Φty > y if y > x and Φty < y if y < x, where Φt

is the lift of φt such that Φ0 = Id. It is easy to see that if x′ < x and x′′ > x are
sufficiently close to x and if t > 0 is small then f̃ = f ◦ φt satisfies the conditions
of the lemma. We note that since f has irrational rotation number, f̃ can be also
chosen to have an irrational rotation number and can be made as close to f as we
wish. �
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Since Fα1 = Id + p1 for some p1 ∈ Z, Lemma 4.1 implies that there exists f̃ ∈ U0

such that F̃ n
α1

(x′) < x′ + p1 and F̃ n
α1

(x′′) > x′′ + p1 for some x′, x′′ ∈ R. It follows

that for α ∈ I1 we have F̃ n
α (x′) < x′ + p1 if α < α1, and F̃ n

α (x′′) > x′′ + p1 if α > α1.

If f̃ is chosen close to f then |F̃α(x) − Fα1(x)| < |I1| for any α ∈ I1 and x ∈ R.
So by the choice of the length |I1| it follows that

|F̃ n
α (x)− (x + p1)| = |F̃ n

α (x)− F n
α1

(x)| < 1

and therefore
x + p1 − 1 < F̃ n

α (x) < x + p1 + 1

for any α ∈ I1 and x ∈ R. So we conclude that f̃α 6= Id for α ∈ I1 ∪ E.
We can choose a neighborhood U1 ⊂ U0 of f̃ such that gn

α 6= Id for any g ∈ U1

and any α ∈ E ∪ I1. The proposition now follows by consecutive application of
Lemma 4.1. �

Proposition 4.3. Let f ∈ D ω
I satisfy the property (?). Then for any δ > 0 there

exists α∗, 0 < α∗ < δ, such that the diffeomorphism fα∗ = f + α∗ (mod 1) has
irrational rotation number and for its unique invariant measure µ, dµ(x) = 0 and

dµ(x) = 1 for µ-a.a. x ∈ S1.

Proof. Our construction uses the method of constructing analytic circle diffeomor-
phisms with singular conjugacy described in [6].

Consider the family of analytic circle diffeomorphisms

fα = f + α (mod 1), where 0 < α < δ.

Denote by τ(α) the rotation number of fα. This family has the following properties:

(a) τ(α) is nondecreasing in α;

(b) fα never has infinitely many periodic points (by the property (?));

(c) Suppose that α is the right endpoint of some interval J such that τ(α′) = p/q,
α′ ∈ J . Then the lift of fα satisfies F q

α − Id − p ≥ 0 and the zeros of F q
α − Id − p

project to the periodic orbits of fα. Hence all periodic orbits of fα are semistable,
i.e. attract on one side and repel on the other side. All non-periodic points move in
the same direction under iterations of f q

α (see [6] for more details).

We will inductively choose two sequences of numbers {αn}∞n=1 and {α̃n}∞n=1

satisfying:

(1) αn, α̃n < δ/2;
(2) αn−1 < α̃n−1 < αn;

(3) αn = max τ−1(pn/qn); τ(α̃n) is Diophantine;

(4) pn/qn − pn−1/qn−1 <

(
2(n− 1)2 max

1≤k≤n−1
q2
k

)−1

.
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Let Pn be the number of periodic points of fαn . Choose rn > 0 so small that
rn ≤ (2nPn)−n and open intervals of length rn centered at the periodic points of fαn

are disjoint. Let In be the union of these intervals. By (c), there exists a number
k(αn, In) such that the orbit of any point x ∈ S1 has at most k(αn, In) points outside
I.

Any sufficiently small perturbation of fαn satisfies the following two properties.

(i) The time of the first return to In is bounded above by k(αn, In) + 1.

(ii) Once a trajectory enters In next 2n+2k(αn, In) iterations belong to In.

It follows that there exists εn > 0 such that for any α ∈ [αn, αn + εn)

1

N

N∑
k=0

χ
In

(fk
α(x)) > 1− 1

2n

for any N > 2n+2k(αn, In) and any x ∈ S1.
We will choose αm, m > n, and α̃l, l ≥ n, such that

(5) αm, α̃l ∈ [αn, αn + εn/2 ).

Now we choose a number α̃n ∈ [αn, αn + εn/2 ) such that τ (α̃n) is Diophantine.
This implies that fα̃n is smoothly conjugate to the rotation Rτ (α̃n) ([5]). Denote by
µα̃n the unique invariant measure corresponding to fα̃n . Since µα̃n has a smooth
density there exists r̃n > 0 such that for any x ∈ S1

log µα̃n(B(x, r̃n))

log r̃n

> 1− 1

2n+1
.

There exists ε̃n > 0 such that for any α ∈ [α̃n, α̃n + ε̃n) with irrational τ (α)

log µα(B(x, r̃n))

log r̃n

> 1− 1

2n

for all x ∈ S1.
We will choose αm, α̃m, m > n, such that

(6) αm, α̃m ∈ [α̃n, α̃n + ε̃n/2 ).

Let α∗ = lim
n→∞

αn. Note that the limit exists since the sequence {αn} is monotone

and bounded from above, and α∗ ≤ δ/2.
Now we will show that τ(α∗) is indeed irrational. By continuity, τ(α∗) = limn→∞ pn/qn.

Therefore,

τ(α∗)−pn/qn =
∞∑

k=n

( pk+1/qk+1−pk/qk ) ≤
∞∑

k=n

1

2k2 max
1≤i≤k

q2
i

≤
∞∑

k=n

1

2k2q2
n

≤ π2

12q2
n

<
1

q2
n

.

On the other hand, if τ(α∗) = p/q then for n ∈ N such that qn > q we have

p/q − pn/qn =
pqn − qpn

qqn

>
1

q2
n

.
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Let us denote by µ the invariant measure for fα∗ . Since α∗ ∈ (αn, αn + εn/2 ],

1

N

N∑
k=0

χ
In

(fk
α∗(x)) > 1− 2−n

for all N > 2n+2k(αn, In), and hence µ(In) ≥ 1− 2−n.

Recall that the set In consists of Pn open intervals of length rn. Let În be the
union of those intervals ∆n ⊂ In for which µ(∆n) ≥ (2nPn)−1. Since rn ≤ (2nPn)−n

we have
log µ(B(x, rn))

log rn

≤ 1

n

for any x ∈ În. Therefore, if a point x belongs to În for infinitely many n then
dµ(x) = 0. Otherwise x ∈

⋃∞
m=1

⋂∞
n=m(S1 \ În) = F .

Note that µ(În) ≥ µ(In)−Pn(2nPn)−1 ≥ 1−2−n+1. It follows that µ(
⋂∞

n=m(S1\
În)) = 0, and µ(F ) = 0. So we conclude that dµ(x) = 0 for µ-a.a. x ∈ S1.

Since α∗ ∈ (α̃n, α̃n + ε̃/2 ] for any n, dµ(x) ≥ 1 for all x ∈ S1. This together

with Lemma 2.1 implies that dµ(x) = 1 for µ-a.a. x ∈ S1 �

Now we will prove Theorem 4.1 using Propositions 4.2 and 4.3. The proof is
similar to the proof of Theorem 2.1.

Proof. By Proposition 4.2 uniquely ergodic property (?) diffeomorphisms are dense
in D ω

I . Hence using Proposition 4.3 we can construct a dense subset Z ⊂ D ω
I with

the following property. For every f ∈ Z and n > 0 there exist positive numbers
r̃n < rn < 2−n and a set În with µ(În) > 1 − 2−n+1 (constructed in the proof of
Proposition 4.3) such that

log µ(B(x, rn))

log rn

<
1

n
for any x ∈ În,

log µ(B(x, r̃n))

log r̃n

> 1− 1

n
for any x ∈ S1,

where µ is the unique invariant measure for f .
For any diffeomorphism f ∈ Z we can construct a sequence of its neighborhoods,

{V f
n }∞n=1, such that for any uniquely ergodic diffeomorphism g in V f

n and its the
unique invariant measure ν we have

log ν(B(x, rn))

log rn

<
2

n
for any x ∈ În,

log ν(B(x, r̃n))

log r̃n

> 1− 2

n
for any x ∈ S1,
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and ν(În) > 1− 2−n+2, where În, rn and r̃n are the same as for f . Indeed, if f and
g are sufficiently close in C0-topology, their invariant measures are sufficiently close
in the week topology.

Let Y ω
0 =

⋂∞
n=1

⋃
f∈Z V f

n . Then Y ω
0 ∩ D ω

I and Y ω
0 ∩ D ω

I are residual subsets of

D ω
I and D ω

I respectively.
Any uniquely ergodic diffeomorphism g in Y ω

0 satisfies the above condition for
some sequence of scales {rn} and {r̃n} which converge to 0. It follows that dν(x) = 0,
dν(x) = 1 for ν-a.a. x ∈ S1.

Since rn, r̃n and În are as in the proof of Proposition 4.3, we see that the set În can
be covered by at most Pn intervals of length rn ≤ (2nPn)n. Hence log Pn/ log rn →
0 as n → ∞ and we conclude that dimB(

⋂∞
n=k În) = 0 for any k > 0. Since

ν(
⋂∞

n=k În) > 1− 2−n+3 → 1, it follows that dimBν = 0.

On the other hand, since ν(B(x, r̃n)) < r̃
1− 2

n
n for any x ∈ [0, 1], the minimal

number N of balls of radius needed to cover a set of ν-measure 1 − ε is at least

(1− ε) r̃
−(1− 2

n
)

n . Hence

log N

− log r̃n

≥ 1− 2

n
+

log(1− ε)

− log r̃n

−→
n→∞

1

and we conclude that dimBν ≥ 1. Since

0 ≤ dimH ν ≤ dimBν ≤ dimBν ≤ 1

for any finite measure on S1, we see that

dimH ν = dimBν = 0 and dimBν = 1.

This implies that any uniquely ergodic diffeomorphism g in Y ω
0 lies in Y ω. Since

the set of the diffeomorphisms in D ω
I which are not uniquely ergodic is of the first

category, we conclude that Y ω is a residual subset in both D ω
I and D ω

I .
�
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