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Abstract. We consider a transitive uniformly quasiconformal Anosov diffeomor-
phism f of a compact manifold M. We prove that if the stable and unstable dis-
tributions have dimensions greater than two, then f is C∞ conjugate to an affine
Anosov automorphism of a finite factor of a torus. If the dimensions are at least
two, the same conclusion holds under additional assumption that M is an infranil-
manifold. We also describe necessary and sufficient conditions for smoothness of
conjugacy between such a diffeomorphism and a small perturbation.

1. Introduction

The goal of this paper is to investigate the local and global rigidity of uniformly
quasiconformal Anosov diffeomorphisms. First we study the global rigidity, i.e. a
classification of these systems up to C∞ conjugacy. Then we consider local rigidity,
i.e. the question when an Anosov diffeomorphism is smoothly conjugate to a small
perturbation.

The global rigidity properties of conformal and quasiconformal Anosov systems
were studied by D. Sullivan [18], M. Kanai [8], and C. Yue [19] in the case of
geodesic flows of compact manifolds of negative curvature of dimension at least
three. Based on the earlier work of M. Kanai, C. Yue showed that if the flow is
uniformly quasiconformal then the manifold is of constant curvature. The approach
used in these papers was centered at studying the properties of the sphere at infinity.
In [17] V. Sadovskaya considered a more general class of uniformly quasiconformal
contact Anosov flows and symplectic Anosov diffeomorphisms. Using a different
approach, she proved that these systems are essentially C∞ conjugate to algebraic
models, i.e. automorphisms of tori and geodesic flows of compact manifolds of
constant negative curvature. The following theorem generalizes this result for the
case of arbitrary transitive uniformly quasiconformal Anosov diffeomorphisms.

Theorem 1.1. Let f be a transitive C∞ Anosov diffeomorphism of a compact man-
ifold M which is uniformly quasiconformal on the stable and on the unstable dis-
tributions. Suppose either that both distributions have dimension at least three, or
that they have dimension at least two and M is an infranilmanifold. Then f is C∞

conjugate to an affine Anosov automorphism of a finite factor of a torus.

The first author was partially supported by NSF grant DMS 0140513.
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The example in Section 4 shows that there exist nontrivial finite factors of con-
formal Anosov toral automorphisms. We prove this theorem in Section 3. We use
results of V. Sadovskaya in [17] and the theorem of Y. Benoist and F. Labourie in
[1] on classification of Anosov diffeomorphisms with C∞ Anosov splitting preserving
a C∞ affine connection.

We note that the global rigidity results described above do not have analogs for
systems with one-dimensional stable or unstable distributions, since all maps in
dimension one are conformal.

We apply Theorem 1.1 to investigate the local rigidity of quasiconformal Anosov
diffeomorphisms. The proofs of all the statements are given in Section 5.

If f is an Anosov diffeomorphism and g is sufficiently C1 close to f , then it is
well known that f and g are topologically conjugate. In general, the conjugacy is
only Hölder continuous. A necessary condition for the conjugacy to be C1 is that
the Jordan normal forms of the derivatives of the return maps of f and g at the
corresponding periodic points are the same. This condition is also sufficient in the
case of Anosov systems with one-dimensional stable and unstable distributions [10],
[11], [14], [16]. Examples constructed by R. de la Llave in [11] show that this con-
dition in general is not sufficient for higher dimensional systems. In contrast to one
dimensional case, these examples have different (un)stable Lyapunov exponents, i.e.
different exponential rates of contraction (expansion). However, even if there is only
one stable and one unstable Lyapunov exponents, one cannot expect to generalize
the one-dimensional result. Indeed, in [12] R. de la Llave gave an example of an
automorphism of four-dimensional torus with double (un)stable eigenvalue and a
nontrivial Jordan block in the (un)stable direction, for which the condition above
does not guarantee C1 conjugacy to a perturbation. This suggests that the quasicon-
formality of the unperturbed system is a natural assumption for higher dimensional
generalizations. Indeed, for a uniformly quasiconformal Anosov diffeomorphism the
derivative of the return map at any periodic point is diagonalizable over C, and all
of its (un)stable eigenvalues are equal in modulus. In [12] R. de la Llave proved that
the coincidence of the Jordan normal forms at the corresponding periodic points
guarantees the smoothness of the conjugacy for a certain class of conformal Anosov
systems. We discuss this result in more details below. If the unperturbed system is
uniformly quasiconformal, the following corollary of Theorem 1.1 gives alternative
necessary and sufficient conditions for the regularity of the conjugacy.

Corollary 1.1. Let f be a diffeomorphism as in Theorem 1.1, and let g be a C∞

Anosov diffeomorphism of M which is topologically conjugate to f . Then uniform
quasiconformality of g is necessary for the conjugacy to be Lipschitz and sufficient
for the conjugacy to be C∞.

Next we would like to describe some conditions on the derivatives of the per-
turbed system at the periodic points which guarantee its quasiconformality. We use
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the following proposition, which can be viewed as an analog of a non-commutative
Livschitz theorem.

Proposition 1.1. Let g be a transitive Anosov diffeomorphism of a compact man-
ifold M satisfying the following “bunching” conditions. There exist numbers 0 <
νs ≤ µs < 1 < µu ≤ νu such that for all x ∈ M

νs‖v‖ ≤ ‖df sx(v)‖ ≤ µs‖v‖ for all v ∈ Es(x),

µu‖v‖ ≤ ‖dfux (v)‖ ≤ νu‖v‖ for all v ∈ Eu(x),

and
µ2
s

νs
< 1,

µs
νsµu

< 1,
νu
µ2
u

< 1,
νuµs
µu

< 1. (1.1)

Suppose there exists a continuous Riemannian metric on M such that for all periodic
points the stable and the unstable differentials of the return map are conformal. Then
g is uniformly quasiconformal.

We note that once g in the proposition is uniformly quasiconformal, the results of
V. Sadovskaya in [17] imply that g is actually conformal with respect to a smooth
Riemannian metric (see Corollary 3.1 below).

Let f be a diffeomorphism satisfying the assumptions of Theorem 1.1. Then it
follows from the theorem that f also satisfies conditions (1.1) above, and so does
any sufficiently C1-small perturbation of f . Thus, Corollary 1.1 and Proposition 1.1
imply the following theorem.

Theorem 1.2. Let f be a diffeomorphism as in Theorem 1.1 and let g be its C1-
small perturbation. Suppose that there exists a continuous Riemannian metric on
M such that for all periodic points of g the stable and the unstable differentials of
the return map are conformal. Then g is C∞ conjugate to f .

It would be interesting to know to what extent the assumption of Theorem 1.2 can
be relaxed. Since uniform quasiconformality is a necessary condition, the derivative
of the return map at any periodic point must be diagonalizable over C, and all of its
(un)stable eigenvalues must be equal in modulus. This is equivalent to the fact that
for each periodic orbit there exists an invariant conformal structure which, however,
may vary from orbit to orbit in a non-continuous fashion.

Remark. After this paper was written, we became aware of a result by R. de
la Llave ([13] Theorem 10.3), which is similar to Proposition 1.1. In this theorem,
the assumption of continuity of the Riemannian metric is essentially replaced by
the assumption of its uniform boundedness. Hence the assumption of Theorem 1.2
can be similarly relaxed. The proof of Proposition 1.1 can be modified using the
specification property to obtain the stronger version.

We note that if the stable and the unstable differentials of the return maps at
periodic points of g are scalar multiples of identity, then they preserve any conformal
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structure, and hence the assumption of Theorem 1.2 is trivially satisfied. Thus we
obtain the following corollary.

Corollary 1.2. Let f be a diffeomorphism as in Theorem 1.1 such that for any
periodic point x

dfm|Es(x) = as(x) · Id and dfm|Eu(x) = au(x) · Id, (1.2)

where m is the period and as(x), as(x) are real numbers. Let g be a C∞ diffeomor-
phism of M which is sufficiently C1-close to f , and let h be the topological conjugacy
between f and g. Suppose that for any periodic point x the derivatives dfmx and
dgmh(x) have the same Jordan normal form. Then h is a C∞ diffeomorphism, i.e. g
is C∞ conjugate to f .

A similar result was obtained in [12] by R. de la Llave under the additional
assumption that the subspaces Es(x) and Eu(x) for all x ∈ M can be continuously
identified with R dimEs(x) and R dimEu(x) in such a way that the restrictions of the
differential of f to Es(x) and Eu(x) are scalar multiples of identity. We note that
this implies conformality of f with respect to a continuous metric on M.

It is an open question whether the additional assumption (1.2) can be removed.
This question is closely related to generalizing Proposition 1.1 and Theorem 1.2.

We would like to thank Ralf Spatzier for helpful discussions.

2. Preliminaries

In this section we briefly introduce the main notions used throughout this paper.

2.1. Anosov diffeomorphisms. Let f be a diffeomorphism of a compact Riemann-
ian manifold M. The diffeomorphism f is called Anosov if there exist a decomposi-
tion of the tangent bundle TM into two f -invariant continuous subbundles Es and
Eu, and constants C > 0, 0 < λ < 1 such that for all n ∈ N,

‖dfn(v)‖ ≤ Cλn‖v‖ for v ∈ Es,

‖df−n(v)‖ ≤ Cλn‖v‖ for v ∈ Eu.

The distributions Es and Eu are called stable and unstable. It is well-known that
these distributions are tangential to the foliations W s and W u respectively (see,
for example [9]). The leaves of these foliations are C∞ injectively immersed Eu-
clidean spaces, but in general the distributions Es and Eu are only Hölder continuous
transversally to the corresponding foliations.
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2.2. Uniformly quasiconformal diffeomorphisms. Let f be an Anosov dif-
feomorphism of a compact Riemannian manifold M. We say that the diffeomor-
phism is uniformly quasiconformal on the stable distribution or uniformly s-quasi-
conformal if the quasiconformal distortion

Ks(n, x) =
max { ‖ dfn(v) ‖ : v ∈ Es(x), ‖v‖ = 1 }
min { ‖ dfn(v) ‖ : v ∈ Es(x), ‖v‖ = 1 }

is uniformly bounded for all n ∈ Z and x ∈ M. This is equivalent to the classical
definition of uniform quasiconformality, since

Ks(n, x) = lim sup
r→0

sup { ds(fny, fnx) : y ∈ Ss(x, r) }
inf { ds(fny, fnx) : y ∈ Ss(x, r) }

,

where ds is the induced metric along the W s leaves, and Ss(x, r) = {y ∈ W s(x) :
ds(x, y) = r}. If Ks(n, x) = 1 for all x and n, the diffeomorphism is called s-
conformal. The notions of u-conformality and uniform u-quasiconformality are
defined similarly.

If a diffeomorphism is both uniformly u-quasiconformal (u-conformal) and uni-
formly s-quasiconformal (s-conformal) then it is called uniformly quasiconformal
(conformal). We note that the notion of uniform quasiconformality does not de-
pend on the choice of a Riemannian metric on the manifold.

2.3. Conformal structures. (See [8] for more details.) A conformal structure on
Rn, n ≥ 2, is a class of proportional inner products. The space Cn of conformal
structures on Rn identifies with the space of real symmetric positive definite n× n
matrices with determinant 1 which is isomorphic to SL(n,R)/SO(n,R). It is known
that the space Cn = SL(n,R)/SO(n,R) carries a GL(n,R)-invariant metric for
which Cn is a Riemannian symmetric space of non-positive curvature. Any linear
isomorphism of Rn induces an isometry of Cn.

Now, let f be an Anosov diffeomorphism of a compact manifold M. For each
x ∈ M, let Cs(x) be the space of conformal structures on Es(x). Thus we obtain a
bundle Cs over M whose fiber over x is Cs(x). A continuous (smooth, measurable)
section of Cs is called a continuous (smooth, measurable) conformal structure on Es.
A measurable conformal structure τ on Es is called bounded if the distance between
τ(x) and τ0(x) is uniformly bounded on M, where τ0 is a continuous conformal
structure on Es.

Clearly, a diffeomorphism is conformal with respect to a Riemannian metric if
and only if it preserves the conformal structure associated with this metric.

2.4. Affine connections. Let M be a smooth manifold. An affine connection ∇
on M is a mapping that associates a vector field ∇XY to a pair of smooth vector
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fields X and Y on M and satisfies the following properties:

1. ∇ϕX+ψYZ = ϕ∇XZ + ψ∇YZ,

2. ∇X(Y + Z) = ∇XY +∇XZ,

3. ∇X(ϕY ) = (Xϕ)Y + ϕ∇XY,

where X, Y , Z are smooth vector fields, and ϕ, ψ are smooth functions on M. A
connection ∇ is of class Cr, r ≥ 0, if ∇XY is Cr for any two C∞ vector fields X
and Y .

3. Proof of Theorem 1.1

Let f be a C∞ transitive uniformly quasiconformal Anosov diffeomorphism of a
compact manifold M with dimEu ≥ 2 and dimEs ≥ 2. First we recall the following
two results established in [17].

Theorem 3.1 ([17], Theorem 1.3). Let f be a topologically transitive uniformly u-
quasiconformal C∞ Anosov diffeomorphism of a compact manifold M. Then it is
conformal with respect to a Riemannian metric on Eu which is Hölder continuous
on M and C∞ along the leaves of the unstable foliation.

Theorem 3.2 ([17], Theorem 1.4). Let f be a C∞ Anosov diffeomorphism of a
compact manifold M with dimEu ≥ 2. Suppose it is conformal with respect to
a Riemannian metric on the unstable distribution which is continuous on M and
C∞ along the leaves of the unstable foliation. Then the stable holonomy maps are
conformal, and the stable distribution is C∞.

Since the diffeomorphism f is also uniformly s-quasiconformal, Theorems 3.1 and
3.2 also hold for the corresponding distributions and holonomy maps. Thus both the
stable and the unstable distributions are C∞, and both the stable and the unstable
holonomy maps are C∞ and conformal with respect to the corresponding metrics.

Let τu and τ s be the conformal structures associated with the conformal metrics
on Eu and Es. Since the distribution Eu is C∞, and the stable holonomy maps
preserve the structure τu and are C∞, we conclude that τu is C∞ not only along the
leaves of W u, but also along the leaves of W s. Thus, the structure τu is C∞ on the
manifold M. Similarly, τ s is also C∞ on M. Normalizing these structures using C∞

functions on M, we obtain metrics on Eu and Es which are C∞ on M. Combining
these two metrics, we obtain the following corollary.

Corollary 3.1. Let f be a transitive uniformly quasiconformal C∞ Anosov diffeo-
morphism of a compact manifold M with dimEu ≥ 2 and dimEs ≥ 2. Then the
Anosov splitting is C∞, and f is conformal with respect to a C∞ Riemannian metric
on M.

To prove Theorem 1.1, we use a result of Y. Benoist and F. Labourie, who showed
in [1] that any Anosov diffeomorphism with C∞ Anosov splitting, which preserves
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a C∞ affine connection, is C∞ conjugate to an automorphism of an infranilmani-
fold. The main part of our proof is a construction of an f -invariant smooth affine
connection. Then Corollary 3.1 and the result of Y. Benoist and F. Labourie imply
that f is C∞ conjugate to an Anosov automorphism an infranilmanifold. Since the
diffeomorphism is uniformly quasiconformal, the corresponding nilpotent group has
to be abelian. Indeed, if the group is not abelian, then the Anosov automorphism
must have at least two unstable Lyapunov exponents and thus can not be uniformly
quasiconformal. Since the group is abelian the infranilmanifold is finitely covered
by a torus. To complete the proof of Theorem 1.1, we will construct an f -invariant
smooth affine connection.

In [2] R. Feres proved that any 1/2-pinched Anosov diffeomorphism preserves a
unique invariant continuous affine connection. We generalize this result in Corollary
3.2. In [3] R. Feres noted that the exponential map of an invariant connection gives a
non-stationary local linearization. Our approach is different, we use a non-stationary
local linearization to obtain an f -invariant affine connection, which is as smooth as
the linearization.

Proposition 3.1. Let f be a diffeomorphism of a compact manifold M. Suppose
that there exists a family of C∞ diffeomorphisms hx, x ∈ M, from a neighborhood
Ux of x to TxM such that

(i) hfx ◦ f = dfx ◦ hx,
(ii) hx(x) = 0 and (dhx)x is the identity map,
(iii) hx depends Cr smoothly on x, r = 0, 1, ...,∞.

Then there exists a Cr f -invariant affine connection.

Proof. To obtain the f -invariant connection ∇ we pull back the affine connection
∇x on TxM using the map hx at each point x ∈M . More precisely, for vector fields
X and Y on M we define

(∇XY )(x) = (hx)
−1
∗ ∇x

(hx)∗X(hx)∗Y.

It is easy to see that ∇ is an affine f -invariant connection, which is as smooth as
the dependence of hx on x. �

Thus to obtain a smooth f -invariant affine connection it suffices to construct a
local non-stationary linearization and show that it is smooth. First we use the
following proposition from [17] to obtain linearizations in the stable and in the
unstable directions separately.

Proposition 3.2 ([17] Proposition 4.1). Let f be a diffeomorphism of a compact
Riemannian manifold M, and let W be a continuous invariant foliation with C∞

leaves. Suppose that ‖df |TW‖ < 1, and there exist numbers C > 0 and ε > 0 such
that for any x ∈ M and n ∈ N,

‖ (dfn|TxW )−1 ‖ · ‖ dfn|TxW ‖2 ≤ C(1− ε)n. (3.1)
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Then for any x ∈ M there exists a C∞ diffeomorphism hwx : W (x) → TxW such that
(i) hwfx ◦ f = dfx ◦ hwx ,
(ii) hwx (x) = 0 and (dhwx )x is the identity map,
(iii) hwx depends continuously on x in C∞ topology.

Clearly, condition (3.1) is satisfied for uniformly s-quasiconformal diffeomorphisms
with W being the stable foliation. Thus we obtain a family of diffeomorphisms
hsx : W s(x) → Es(x). Similarly, for a uniformly u-quasiconformal diffeomorphism
we obtain a family hux : W u(x) → Eu(x).

If for an Anosov diffeomorphism there exist stable and unstable linearizations hs

and hu as above, we can construct a local linearization hx : Ux → TxM, where Ux is
a small open neighborhood of x ∈ M and hx depends continuously on x. We define
the map hx as follows:

hx|Wu(x) = hux, hx|W s(x) = hsx, (3.2)

and for y ∈ W u(x) ∩ Ux and z ∈ W s(x) ∩ Ux we set

hx([y, z]) = hux(y) + hsx(z), (3.3)

where [y, z] = W s
loc(y) ∩W u

loc(z). It is easy to see that h satisfies conditions (i)-(iii)
of Proposition 3.1 with r = 0.

Thus, as a corollary of Propositions 3.1 and 3.2 we obtain the following statement.
Since our assumption is clearly weaker than 1/2-pinching, it generalizes the result
of R. Feres mentioned above.

Corollary 3.2. Let f be an Anosov diffeomorphism of a compact Riemannian man-
ifold M. Suppose there exists C > 0 and ε > 0 such that for any x ∈ M,

‖
(
dfn|Es(x)

)−1 ‖ · ‖ dfn|Es(x) ‖2 ≤ C(1− ε)n for n > 0, and

‖
(
dfn|Eu(x)

)−1 ‖ · ‖ dfn|Eu(x) ‖2 ≤ C(1− ε)|n| for n < 0.

Then f preserves a continuous affine connection.

So far we have constructed a local non-stationary linearization h and an invariant
continuous affine connection ∇ for the uniformly quasiconformal Anosov diffeomor-
phism f . To complete the proof of Theorem 1.1, it remains to show that hx depend
smoothly on x, and hence ∇ is smooth. Since the stable and unstable foliations are
C∞, it is clear from the definition of hx above that it suffices to prove that the maps
hsx and hux depend smoothly on x. We will show this for hsx.

An important property of the maps hsx is that they are conformal in the following
sense. Recall that τ s is the invariant conformal structure on the stable distribu-
tion. For each x ∈ M we extend the conformal structure τ s(x) at 0 ∈ Es(x) to
all other points of Es(x) via translations. We denote this constant (translation-
invariant) conformal structure on Es(x) by σs. Since the conformal structure τ s

is f -invariant, σs is df -invariant. The following lemma from [17] shows that hsx is
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conformal, i.e. it takes τ s on W s(x) into σs on Es(x). We include the proof for the
sake of completeness.

Lemma 3.1 ([17], Lemma 3.1). If the family of maps hsx satisfies properties (i),
(ii), and (iii) of Proposition 3.2, then hsx is conformal, i.e. it takes τ s on W s

x into
σs on Es(x).

Proof. For any map g and conformal structure ρ(x) at a point x ∈ M, we denote by
g(ρ(x)) the push forward of ρ(x) to the point g(x) by dgx. To simplify the notations,
for this proof we put h = hs, τ = τ s, and σ = σs.

We need to show that for any y ∈ W s(x), hx(τ(y)) = σ(hx(y)). To do this, we
move forward using the diffeomorphism f . First we note that for any ε > 0 there
exists n > 0 such that

dist(hfnx(τ(f
ny)), σ(hfnx(f

n(y))) < ε.

Indeed, it follows from Proposition 3.2 (iii) that the restrictions of the derivative of
hx to the ball of radius 1 around x in W s(x), x ∈ M, form an equicontinuous family.
Hence if fny is sufficiently close to fnx, then dhfnx(f

ny) is close to dhfnx(f
nx),

which is identity. Thus hfnx(τ(f
ny)) is close to hfnx(τ(f

nx)), and by definition of
σ,

hfnx(τ(f
nx)) = σ(hfnx(f

nx)) = σ(hfnx(f
ny)).

To obtain the following equalities, we note that df−n induces an isometry between
the spaces of conformal structures, τ is f -invariant, σ is df -invariant, and hx(y) =
df−n(hfnx(f

ny) by Proposition 3.2 (i). Thus,

ε > dist (hfnx(τ(f
ny)), σ(hfnx(f

ny) )

= dist ( df−n(hfnx(τ(f
ny))), df−n(σ(hfnx(f

ny)) )

= dist ( df−n(hfnx(f
n(τ(y))), σ(df−n(hfnx(f

ny)) )

= dist (hx(τ(y)), σ(hx(y)) ).

As the above holds for any ε > 0, it follows that hx(τ(y)) = σ(hx(y)). �

Now we show that the maps hsx depend smoothly on the base point. We fix a point
x in M and consider the local coordinates given by the C∞ map hx : Ux → TxM
defined by (3.2) and (3.3). Let us identify TxM with Rn × Rm in such a way
that Es(x) corresponds to Rn, and Eu(x) corresponds to Rm. Then hx identifies
the neighborhood Ux ⊂ M of x with an open neighborhood U of 0 in Rn × Rm. It
follows from (3.3) that the local stable (unstable) manifolds correspond to subspaces
parallel to Rn (Rm). The tangent space TpM, p ∈ Ux, is identified with Rn × Rm

by (dhx)p in such a way that 0 corresponds to p̃ = hx(p). We will show that when
written in these coordinates, the maps hsp, p ∈ Ux, are identity maps and hence they
depend smoothly on p.
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Let us define the map

ψp = hx|W s
p∩Ux : W s

p ∩ Ux → Rn
p̃ ∩ U,

where Rn
p̃ is the subspace through p̃ parallel to Rn. We denote by h̃sp the coordinate

representation of hsp, i.e.

h̃sp = (dψp)p ◦ hsp ◦ ψ−1
p : Rn

p̃ ∩ U → Rn
p̃ .

It is clear from the construction of hx that

ψp = H̃u
0,p̃ ◦ hsx ◦Hu

p,x,

where Hu
p,x is the unstable holonomy map from W s(p) to W s(x), and H̃u

0,p̃ is the
projection from Rn to Rn

p̃ along Rm in Rn×Rm. The holonomy map Hu
p,x is C∞ and

conformal by Theorem 3.2. The map hsx is C∞ and conformal by Proposition 3.2
and Lemma 3.1. Hence the map ψp is also C∞ and conformal. Since hsp is conformal,

we conclude that h̃sp is C∞ and conformal. We also note that

h̃sp(p̃) = p̃ and (dh̃sp)p̃ = (dψp)p ◦ (dhsp)p ◦ (dψ−1
p )p̃ = Id, (3.4)

since by Proposition 3.2 (ii) we have (dhsp)p = Id, where Id is the identity map.

To conclude that h̃sp depend smoothly on p we will use the fact that the holo-
nomy map Hu

p,x from W s(p) to W s(x) is defined globally on the whole stable leaf.
If dimEs > 2, this fact is given by Proposition 3.3 below. If dimEs = 2, we use
the assumption that M is an infranilmanifold. In this case, the transitive Anosov
diffeomorphism f of M is know to be topologically conjugate to an Anosov auto-
morphism of M ([4],[15]), which again implies that the holonomy map Hu

p,x from
W s(p) to W s(x) is defined globally on the whole stable leaf. This is the only place
in the proof where we use the extra assumption that M is an infranilmanifold in the
case of dimEs = 2 (or dimEs = 2). Now it is easy to see that the map ψp can be

extended to the whole W s(p). Hence the map h̃sp can be extended to a conformal

C∞ map from Rn
p̃ to itself. Since n ≥ 2, this implies that h̃sp is a linear map. Now it

follows from the equations (3.4) that h̃sp is the identity map. Thus we conclude that
the maps hsp, h

u
p , and hence hp depend C∞ smoothly on the base point p.

To complete the proof of Theorem 1.1, it remains to prove the following proposi-
tion.

Proposition 3.3. Let f be a uniformly s-quasiconformal transitive Anosov diffeo-
morphism of a compact manifold M with dimension of the stable distribution greater
than 2. Then the unstable holonomy maps are defined globally, i.e. on the whole
leaves of the stable foliation.

Proof. Recall that by Theorems 3.1 and 3.2 the unstable holonomies are C∞ and
conformal with respect to a continuous Riemannian metric on Es which is smooth
along the leaves of W s. By Proposition 3.2 and Lemma 3.1 there exists a continuous
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(in C∞ topology) family of C∞ conformal maps hsx : W s(x) → Es(x) which give a
non-stationary linearization of f along the stable leaves.

We note that the maps hsx induce a conformal affine structure on the stable leaves
via identifications of W s(x) with Es(x). Indeed, for z ∈ W s(x) the map hsz ◦
(hsx)

−1 : Es(x) → Es(z) is a globally defined smooth conformal map and hence it
is a conformal affine map. Thus we have a notion of a sphere in W s(x). Since
the unstable holonomy maps are conformal and dimEs > 2, the holonomies map
spheres to spheres. This follows from the fact that a conformal map from an open
set in Rn to Rn, n > 2, is a composition of an affine map and an inversion.

The rest of the proof is an adaptation of an argument used by É. Ghys in [5]
to study holomorphic Anosov systems. To prove the proposition it suffices to show
that for any point x ∈ M and any nearby point y ∈ W u(x) the holonomy Hu

x,y is
defined on any ball in W s(x) containing x. Here by a ball we mean a compact set
in W s(x) whose boundary is a sphere. Let us fix such x and y and consider a ball
B in W s(x) containing x.

We fix some Riemannian metric on M and connect x and y by a shortest path
γ : [0, 1] → W u(x) with x = γ(0) and y = γ(1). Let t0 be the supremum of t ∈ [0, 1]
such that the holonomy map Hu

x,γ(t) from W s(x) to W s(γ(t)) is defined on the whole
ball B. Since B is a compact set, it is clear that the holonomy is defined from B to
any sufficiently close stable leaf, and hence t0 > 0. It suffices to show that Hu

x,γ(t0) is

defined on the whole ball B. Indeed, in this case Hu
x,γ(t0)(B) is compact and hence

the holonomy could be extended beyond t0, which forces t0 = 1.
If the supremum R of diamHu

x,γ(t)(B) for 0 ≤ t < t0 is finite, then Hu
x,γ(t0) is

defined on the whole ball B. This follows from the fact that for any t sufficiently
close to t0 the holonomy Hu

γ(t),γ(t0) is defined on the whole ball of radius R around

γ(t).
Suppose to the contrary that diamHu

x,γ(tn)(B) tends to infinity as tn → t0. We

denote xn = γ(tn). Recall that Hu
x,xn

(B) is a ball in W s(xn), i.e. the image of a

ball B(z̃n) in Es(xn) centered at some point z̃n under the map (hsxn
)−1. It is easy

to see that Hu
x,xn

(B) is the image of a ball in Es(zn) centered at zero under the

map (hszn
)−1, where zn = (hsxn

)−1(z̃n). This follows from the fact that hszn
◦ (hsxn

)−1

is a conformal affine map and thus takes B(z̃n) to a ball in Es(zn) centered at
0 = hszn

◦ (hsxn
)−1(z̃n). We note that for any point z ∈ M, the images of the balls

centered at zero in Es(z) under the map (hsz)
−1 exhaust W s(z). Hence the diameter

of the largest metric ball contained in Hu
x,xn

(B) tends to infinity.
We recall that for a transitive Anosov diffeomorphism f there exists a family

{µs} of measures on the stable leaves which are conditional measures of the Bowen-
Margulis measure (the unique measure of maximal entropy) [9]. These measures are
invariant under the unstable holonomies, i.e. µs(V ) = µs(Hu

x,y(V )), where V is an
open subset of W s(x) with compact closure. These measures also contract uniformly
under f , i.e. µs(fnV ) = e−hnµs(V ), where h is the topological entropy of f . Since
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the measures are invariant under the unstable holonomies and the Bowen-Margulis
measure is positive on open sets, it is easy to see that µs(Bs

1(x)) is bounded away
from zero, where Bs

1(x) is a ball of radius 1 inW s(x). Now if follows from the uniform
contraction property that µs(Bs

R(x)) →∞ as R→∞ uniformly in x. This implies
that µs(Hu

x,xn
(B)) → ∞, which contradicts the fact that µs(Hu

x,xn
(B)) = µs(B) by

holonomy invariance.
Thus we conclude that the holonomy map Hu

x,γ(t0) is defined on the whole B and

hence γ(t0) = y. Since the choice of B is arbitrary, it follows that the holonomy
Hu
x,y is defined on the whole stable leaf W s(x). �

4. A conformal Anosov automorphism of an infratorus

In this section we construct an example of a conformal Anosov automorphism of
an orientable finite factor of the four-dimensional torus T4.

We consider a group Γ of isometries of R4 = R2 × R2 generated by the integral
translations Z4 = Z2×Z2 and an element γ such that for (x, y) ∈ R2×R2, γ(x, y) =
(x + v, −y), where v =

(
0

1/2

)
. Note that γ2 ∈ Z4, and Z4 is a normal subgroup of

index 2 in Γ.
It is easy to see that the group Γ acts on R4 without fixed points. Hence N = R4/Γ

is a flat manifold whose double cover is T4. Note that N is orientable since both Z4

and γ preserve the orientation of R4. We also note that N is not a torus since Γ is
not abelian. Indeed, if β(x, y) = (x, y + y′), where y′ 6= (0, 0), then β ◦ γ 6= γ ◦ β.

Let A be the direct product of an Anosov automorphism A of R2 with itself:

A =

(
A 0
0 A

)
: R4 → R4, where A =

(
3 2
1 1

)
.

To show that the action of A on R4 projects to N we verify that for any (x, y) ∈ R4,
A(Γ(x, y)) = Γ(A(x, y)). Since detA = 1, A(Z4) = Z4. Thus it suffices to check
that A(γ(x, y)) ∈ Z4(γ(A(x, y)) and hence A(Z4(γ(x, y))) = Z4(γ(A(x, y)). This
can be seen as follows.

A(γ(x, y))− γ(A(x, y)) = A(x+ v, −y)− γ(Ax,Ay) =

(Ax+ Av, −Ay)− (Ax+ v,−Ay) = (Av − v, 0) =((
1

1/2

)
−

(
0

1/2

)
, 0

)
=

((
1

0

)
, 0

)
∈ Z2 × Z2.

Thus we obtain a conformal Anosov automorphism of N.

5. Proofs of the local rigidity results

In this section we prove our results on local rigidity. First we note that, as indi-
cated in the introduction, Theorem 1.2 follows from Corollary 1.1 and Proposition
1.1, and Corollary 1.2 follows from Theorem 1.2. Below we give the proofs of Corol-
lary 1.1 and Proposition 1.1.
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5.1. Proof of Corollary 1.1. If g is Lipschitz conjugate to f , then it easily follows
from the definition that g is uniformly quasiconformal (see Section 2.2).

Suppose that g is uniformly quasiconformal. Then by Theorem 1.1 both f and
g are C∞ conjugate to affine automorphisms of a finite factor of a torus Tk, where
k = dim M. These affine automorphisms and the corresponding conjugacy lift to
the torus Tk. For this we note that the fundamental group of M has a unique
maximal abelian subgroup isomorphic to Zk. Thus it suffices to show that any
two Anosov automorphisms A and B of Tk which are topologically conjugate are
also C∞ conjugate. Let h be a conjugacy, i.e. a homeomorphism of Tk such that
A ◦ h = h ◦ B. Let H be the induced action of h on the fundamental group Zk of
Tk. Then H is an integral matrix with determinant ±1, and hence it induces an
automorphism of Tk. From the induced actions of A, B, and h on the fundamental
group Zk we see that A ◦H = H ◦ B. Thus, H gives a smooth conjugacy between
A and B. In fact, H = h since the conjugacy to an Anosov automorphism is known
to be unique in a given homotopy class ([9]).

�

5.2. Proof of Proposition 1.1. We will show that g is uniformly s-quasiconformal.
Uniform u-quasiconformality of g follows in the same way.

Recall that Cs is a fiber bundle over M whose fiber over x is the space Cs(x)
of conformal structures on Es(x). Let σ be the continuous conformal structure on
the stable distribution induced by the Riemannian metric given in Proposition 1.1.
For σ, or any other conformal structure, we denote by gn(σ(x)) ∈ Cs(gnx) the push
forward of σ(x) ∈ Cs(x) to the point gnx by dgn|Es(x).

Since g is topologically transitive, we can consider a point x with dense orbit.
Let τ(x) ∈ Cs(x) be an arbitrary conformal structure at x. On the orbit of x we
define an invariant conformal structure τ as follows: τ(gnx) = gn(τ(x)) for n ∈ Z.
We will show that the structure τ is bounded, i.e. g is uniformly s-quasiconformal
along the orbit of x. Since this orbit is dense, this easily implies that g is uniformly
s-quasiconformal on M.

We denote by l(x) the distance between the conformal structures τ(x) and σ(x).
We will show that the function l is uniformly continuous on the orbit of x, and hence
extends to a continuous function on M. This implies that l is bounded. Let y = gmx
and suppose that gny is close enough to y to apply the Anosov Closing Lemma ([9],
Theorem 6.4.15). Then there exists a periodic point z ∈ M with gnz = z such that

dist(giy, giz) ≤ k · dist(y, gny) for i = 0, 1, ..., n,

where k is a uniform constant. Then it follows from Lemma 5.1 below that

‖(dgnz )−1 ◦ dgny − Id ‖ ≤ Ck · dist(y, gny). (4.1)
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Since the differential dgn|Es(y) induces an isometry on the space of conformal
structures and τ is invariant, we obtain

l(gny) = dist(τ(gny), σ(gny)) = dist(gn(τ(y)), σ(gny)) ≤

dist(gn(τ(y)), gn(σ(y))) + dist(gn(σ(y)), σ(gny)) =

dist(τ(y), σ(y)) + dist(gn(σ(y)), σ(gny)) = l(y) + dist(gn(σ(y)), σ(gny)).

To estimate the last term we note that gn(σ(z)) = σ(gn(z)) = σ(z). We also recall
that σ is continuous on M and hence it is bounded and uniformly continuous. Let
ω(ε) be its modulus of continuity, i.e. if dist(x, y) < ε then dist(σ(x), σ(y)) < ω(ε),
and ω(ε) → 0 as ε→ 0. Then using (4.1) we obtain

dist(gn(σ(y)), σ(gny)) ≤ dist(gn(σ(y)), gn(σ(z))) + dist(σ(gnz), σ(gny)) ≤

dist
(
((dgnz )

−1 ◦ dgny )∗ σ(y), σ(z)
)

+ ω(dist(z, gny)) ≤
dist

(
((dgnz )

−1 ◦ dgny )∗ σ(y), σ(y)
)

+ dist(σ(y), σ(z)) + ω(k · dist(y, gny)) ≤
k1kC · dist(y, gny) + 2ω(k · dist(y, gny)),

where the constant k1 depends on the bounded structure σ. Thus we see that

|l(y)− l(gny)| ≤ k1kC · dist(y, gny) + 2ω(k · dist(y, gny)) =: ω̃(dist(y, gny)).

Clearly, ω̃(ε) → 0 as ε → 0 and hence the function l is uniformly continuous. This
implies that l is bounded and thus the conformal structure τ is bounded along the
dense orbit of x, i.e. the quasiconformal distortion Ks(x, n) ≤ K for all n ∈ Z (see
Section 2.2). Since the orbit of x is dense and Ks(y, n) depends continuously on y
for any fixed n, it is easy to see that Ks(y, n) ≤ 2K for any y ∈ M and n ∈ Z. Thus
g is uniformly s-quasiconformal.

To complete the proof of the proposition it remains to prove the following lemma.

Lemma 5.1. Let g be an Anosov diffeomorphism of a compact manifold M satisfying
condition (1.1) of Proposition 1.1. Then there exist C > 0 and ε0 > 0 such that for
any ε < ε0, x, y ∈ M and n ∈ N with

dist (gi(x), gi(y)) < ε for 0 ≤ i ≤ n,

we have ‖(dgnx)−1 ◦ dgny − Id ‖ ≤ Cε.

Here to consider the composition of the derivatives we identify the tangent spaces
at nearby points preserving the Anosov splitting. Since condition (1.1) implies, in
particular, that the the Anosov splitting is C1 ([7, 6]), this identification can be also
chosen C1.

Proof. Since the differential dgx is the direct sum of the stable differential dg|Es(x)

and the unstable differential dg|Eu(x), it suffices to prove the lemma for these re-
strictions. We will prove the lemma for the stable differential, and to simplify the
notations we will write dgx for dg|Es(x).
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If ε0 is small enough, there exists a unique point z ∈ W u
loc(x) ∩W s

loc(y) with

dist(gi(x), gi(z)) < Kε and dist(gi(z), gi(y)) < Kε for 0 ≤ i ≤ n.

Thus it is sufficient to prove the lemma for x and y lying on the same stable or
on the same unstable manifold. We use notations xi = gi(x) and yi = gi(y) for
i = 0, 1, ..., n.

First we consider the case when y ∈ W s(x). Then

(dgnx)
−1◦dgny = (dgn−1

x )−1◦
(
(dgxn−1)−1 ◦ dgyn−1

)
◦dgn−1

y = (dgn−1
x )−1◦(Id+rn−1)◦dgn−1

y

= (dgn−1
x )−1 ◦ dgn−1

y + (dgn−1
x )−1 ◦ rn−1 ◦ dgn−1

y = ... = Id +
n−1∑
i=0

(dgix)
−1 ◦ ri ◦ dgiy,

where we write (dgxi)−1 ◦ dgyi = Id + ri. Since the stable differential is Lipschitz
continuous and y ∈ W s(x), we have

‖ri‖ ≤ L · dist(xi, yi) ≤ L · ε · µis.
Now using the first equation in (1.1) we conclude that

‖Id− (dgnx)
−1 ◦ dgny ‖ ≤

n−1∑
i=0

‖(dgix)−1‖ · ‖ri‖ · ‖dgiy‖ ≤

≤
n−1∑
i=0

ν−is · Lεµis · µis ≤ Lε
n−1∑
i=0

(
µ2
s

νs

)i

≤ Cε.

Similarly, we consider the case when y ∈ W u(x).

dgnx ◦(dgny )
−1 = dgn−1

x1 ◦
(
dgx ◦ (dgy)

−1
)
◦(dgn−1

y1 )−1 = dgn−1
x1 ◦(Id+rn−1)◦(dgn−1

y1 )−1 =

dgn−1
x1 ◦ (dgn−1

y1 )−1 + dgn−1
x1 ◦ rn−1 ◦ (dgn−1

y1 )−1 = ... = Id +
n−1∑
i=0

dgixn−i ◦ ri ◦ (dgiyn−i)−1,

where we write dgxn−i ◦ (dgyn−i)−1 = Id+ ri. Since the stable differential is Lipschitz
continuous and y ∈ W u(x), we have

‖ri‖ ≤ L · dist(xn−i, yn−i) ≤ L · µ−iu · dist(xn, yn) ≤ L · ε · µ−iu .
Now using the second equation in (1.1) we conclude that

‖Id− dgnx ◦ (dgny )
−1‖ ≤

n−1∑
i=0

‖dgixn−i‖ · ‖ri‖ · ‖(dgiyn−i)−1‖ ≤

≤
n−1∑
i=0

µis · Lεµ−iu · ν−is ≤ Lε

n−1∑
i=0

(
µs
µuνs

)i

≤ Cε.

This completes the proof of the lemma. �
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