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Abstract. We consider conformal structures invariant under a volume-
preserving Anosov system. We show that if such a structure is in Lp for
suffiently large p, then it is continuous.

1. Introduction

In this paper we consider integrable conformal structures which are in-
variant under a volume preserving Anosov system. Our goal is to show that
such structures are actually continuous. Our main results for Anosov dif-
feomorphisms and flows are stated in Section 2. In Section 3 we indicate
some generalizations of these results, in particular, an extension to partially
hyperbolic accessible diffeomorphisms.

This research was motivated by recent developments in the study of rigid-
ity properties of conformal Anosov systems. The paper [dlL02] showed that
conformal Anosov systems are locally differentiably rigid. These results were
extended [dlLb]. More results on local and global differentiable rigidity of
such systems were obtained in [Sad] and [KS03].

The above papers assumed that the conformal structures were continuous
or bounded. Various arguments were developed there to show that continu-
ous invariant structures are in fact differentiable. Nevertheless, many of the
tools from the theory of quasi-conformal structures – e.g. the measurable
Riemann mapping theorem – are designed to produce integrable conformal
structures.

The goal of this paper is to bridge the gap between the integrable the-
ory and the continuous/differentiable one. We will show that a conformal
structure is continuous provided that it belongs to a certain Lp with p high
enough. Once the conformal structure is known to be continuous, one can
use the results of [Sad], [KS03] to obtain further regularity for the conformal
structure and differential rigidity for the system. Bootstrap or regularity for
measurable equations has applications in ergodic theory. See for example,
[PP97, NP99].

The method of proof is based on the fact that the invariant structures
satisfy a functional equation very similar to the equation for solutions of
cohomology equations. Hence, some of the techniques of [dlLa] apply. More-
over, taking advantage of the form of the problem, the results for conformal
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structures can be made somewhat sharper than those for general solutions
of cohomology equations.

2. Statement of results

Let M be a m-dimensional C∞ compact manifold, and f : M → M be
a Cr, r ≥ 2, volume-preserving Anosov diffeomorphism. We will assume
that M is endowed with a C∞ “background” metric which is adapted to the
Anosov diffeomorphism. More precisely, there exists a continuous decompo-
sition of the tangent bundle TM into two invariant subbundles Eu, Es and
numbers 0 < λs, λu < 1 such that for all n ≥ 0,

||dfn(v)|| ≤ λn
s ||v|| ⇐⇒ v ∈ Es,

||df−n(v)|| ≤ λn
u||v|| ⇐⇒ v ∈ Eu.

(1)

Let E ⊂ TM be a subbundle invariant under Df , dimE = d ≥ 2. A
conformal structure Cx on Ex ⊂ TxM is a class of proportional positive def-
inite quadratic forms on Ex. Using the background metric, we can identify
a quadratic form with a symmetric linear operator. Hence, with this iden-
tification, a conformal structure is an equivalence class of linear operators.
In this class, we can choose a unique representative which has determinant
1 with respect to the background metric. From now on, we understand the
conformal structure Cx as this linear operator on Ex.

For each x ∈ M, we denote the space of conformal structures on Ex by
Cx = CE

x . Thus we obtain a bundle C = CE over M whose fiber over x is Cx.
A section C of the bundle C is called a conformal structure on E.

The diffeomorphism f induces a natural pull-back action F on conformal
structures as follows. For a conformal structure Cfx ∈ Cfx, Fx(Cfx) ∈ Cx

is given by

(2) Fx(Cfx) =
1

det ((Dfx)∗ ◦Dfx)
(Dfx)∗ ◦ Cfx ◦Dfx.

Here Cfx is the linear operator on Efx, and (Dfx)∗ : TfxM → TxM denotes
the conjugate operator of Dfx. Clearly, Fx : Cfx → Cx is a linear operator.

We say that a conformal structure C is f -invariant if for all x ∈ M,

(3) Fx(Cfx) = Cx.

Note that the subbundle E can carry an invariant conformal structure only
if E ⊂ Es or E ⊂ Eu.

We define the norm of a conformal structure Cx as the norm of the qua-
dratic form with respect to the background metric:

(4) ||Cx|| = sup
0 6=v∈Ex

< Cxv, v >

||v||2
.

Since the operator Cx is symmetric and positive definite, ||Cx|| is equal to
its largest eigenvalue.
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We also define

(5) ||C−1
x || = sup

0 6=v∈Ex

||v||2

< Cxv, v >
,

which is the inverse of the smallest eigenvalue of Cx.
Since the product of all the eigenvalues equals 1, it is easy to see that

||C−1
x ||d−1 ≥ ||Cx|| ≥ ||C−1

x ||
1

d−1 ,

||Cx||d−1 ≥ ||C−1
x || ≥ ||Cx||

1
d−1 .

(6)

With respect to these norms, we can define Lp spaces of conformal struc-
tures. We say that a conformal structure C belongs to Lp if it is measurable
and its norm is an Lp function with respect to the invariant volume on M.
It is clear that the property that C ∈ Lp does not depend on the choice of
the background metric. The inequalities (6) show that ||C|| ∈ Lp implies
||C−1|| ∈ Lp/(d−1) and, similarly, ||C−1|| ∈ Lp implies ||C|| ∈ Lp/(d−1).

Conformal structures at two nearby points can be identified as follows.
When points x and y are close enough, they can be joined by a unique
shortest geodesic. We transport Ex along this geodesic using the Levi-
Civita connection, and then project it to Ey. We denote by Sy

x : CE
x → CE

y

the corresponding identification of conformal structures on Ex and Ey.
If y is in a small neighborhood of x, then the dependence of Sy

x on y is
as smooth as the dependence of Ey on the base point. In particular, when
E is the stable distribution, Sx

y depends smoothly on y when y moves along
the stable manifold.

We now define the L
p,(s)
α spaces for conformal structures. They are a

natural extension to manifolds endowed with an Anosov system of similar
spaces which are standard in harmonic analysis. We refer to [Ste70] for the
results from harmonic analysis that we will need. In this paper we consider
dynamical applications of these spaces similar to those in [dlLa].

Definition 2.1. Let W s be the stable foliation of f . We say that a homeo-
morphism h : M → M is adapted to the stable foliation if for any x ∈ M we
have h(x) ∈ W s

x .

Recall that C is a conformal structure on an invariant subbundle E.

Definition 2.2. We say that C ∈ L
p,(s)
α , 1 ≤ p < ∞, 0 < α ≤ 1, if

(7)
(∫

M
||Cx − Sx

h(x)(Ch(x))||p
)1/p

≤ K · ||h− Id||αL∞

for any absolutely continuous homeomorphism h adapted to the stable folia-
tion with ||h− Id||L∞ sufficiently small and ||Jh||L∞ , ||Jh−1 ||L∞ < ∞. Here
Jh denotes the Jacobian of the mapping h with respect to the backfround
metric.

Analogously, we define the space L
p,(u)
α for the unstable foliation.
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We say that C ∈ L
p
α if the condition (7) is satisfied for any diffeomor-

phism h sufficiently close to the identity.

The spaces L
p,(s)
α , L

p,(u)
α , and L

p
α are Banach spaces with respect to the

norm given by the best possible K in (7).
Our main results are the following two statements.

Theorem 2.1. Let f be a Cr, r ≥ 2, volume-preserving Anosov diffeomor-
phism of a compact manifold M. Let E ⊂ TM be an invariant distribution
of dimension d ≥ 2 which is Hölder continuous with exponent α > 0.

Let C be an invariant conformal structure on E such that ||C|| ∈ Lp,
p ≥ d + 1. Then C ∈ L

p/(d+1)
α .

As a consequence, we obtain the following.

Corollary 2.1. In addition to the assumptions of Theorem 2.1, suppose that
p > d·m

α , where m = dimM. Then the conformal structure C is continuous.

For the continuous-time case, we obtain the following analogs of the above
statements.

Theorem 2.2. Let ϕt be a Cr, r ≥ 2, volume-preserving Anosov flow on a
compact manifold M. Let E ⊂ TM be an invariant distribution of dimension
d ≥ 2 which is Hölder continuous with exponent α > 0.

Let C be an invariant conformal structure on E such that ||C|| ∈ Lp,
p ≥ d + 1. Then C ∈ L

p/(d+1)
α .

Corollary 2.2. In addition to the assumptions of Theorem 2.2, suppose that
p > d·m

α , where m = dimM. Then the conformal structure C is continuous.

Once it is known that the conformal structure C is continuous, its regu-
larity can be improved as follows. Suppose that the diffeomorphism f (the
flow ϕt) is C∞, and E is tangential to a continuous foliation W with C∞

leaves, for example, E is the (strong) stable or unstable distribution. Then,
the continuity of C implies that C is actually C∞ along the leaves of the
foliation W ([Sad]).

3. Generalizations

The main results can be generalized in some respects.

3.1. We can replace the assumption of f being Anosov by f being partially
hyperbolic with uniform accesibility in a measure theoretic sense (see Defi-
nition 2.5 of [dlLa]). The only modification needed is using Proposition 2.12
of [dlLa] instead of Proposition 4.1.

3.2. The assumption that f is volume preserving can be weakened to the
assumption that ||Jµ

f − 1||L∞ is sufficiently small, where Jµ
f is the Jacobian

of f with respect to a smooth volume µ (see Section 5.3 of [dlLa]).
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3.3. In the main statements we assumed that ||C|| ∈ Lp, which auto-
matically implies that ||C−1|| ∈ Lp/(d−1). If we assume in addition that
||C−1|| ∈ Lq with q > p

d−1 , the conclusions can be strengthened. For ex-
ample, if q = p, then in in the corollaries we obtain that C is continuous if
p > 2m

α .

4. Some results from Harmonic Analysis

We will use the following results from harmonic analysis, which already
were a basic tool in [dlLa].

Proposition 4.1. For 1 ≤ p ≤ ∞, 0 < α ≤ 1,

Lp,(s)
α ∩ Lp,(u)

α ⊂ Lp
α.

We start by observing that any diffeomorphism h close to the identity can
be written as h = hu◦hs, where hs, hu are absolutely continuous homeomor-
phisms adapted to the stable and unstable foliations respectively. This fol-
lows from the absolute continuity of stable and unstable foliations of Anosov
diffeomorphisms, and the implicit function theorem (we refer for more de-
tails to [dlLa] Proposition 2.6).

Moreover, we have

||hs,u − Id||L∞ ≤ K1 · ||h− Id||L∞ ,

and the Jacobians of hs and hu are uniformly bounded.
Then, for any Ψ ∈ L

p,(s)
α ∩ L

p,(u)
α , we can estimate

||Ψ ◦ h−Ψ||Lp ≤ ||Ψ ◦ hu ◦ hs −Ψ ◦ hs||Lp + ||Ψ ◦ hs −Ψ||Lp

≤ K2 · ||Ψ ◦ hu −Ψ||Lp + ||Ψ ◦ hs −Ψ||Lp

≤ K2K3 · ||hu − Id||αL∞ + K3 · ||hs − Id||αL∞
≤ K · ||h− Id||L∞ .

�
We denote by W p

α the potential space {f | (−∆ + Id)α/2f ∈ Lp}, i.e. W p
α

is the image of Lp under (−∆+Id)−α/2. In this paper, we will only consider
1 < p < ∞. The limiting cases p = 1,∞ are very special.

Proposition 4.2. Assume that 0 < α < 1, 1 < p < ∞. Then,
(a) L

p
α ⊂ W p

α′ for any α′ < α;
(b) L

p
α ⊂ Lq−ε for any ε > 0, where 1

q = 1
p −

α
d ;

(c) L
p
α ⊂ C0 for p > m

α , where m = dimM.

In all cases, the embeddings are continuous.

Using partitions of unity and coordinate patches, we reduce the proof of
Proposition 4.2 to a proof in Euclidean space.

Then, to prove (a), one can use the estimates in [Ste70] §3.3 and in §3.5.2
p. 141. Note that the spaces that we are calling here L

p
α are called in [Ste70]

Λp,∞
α . The potential spaces W p

α are denoted by another letter in [Ste70].
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In some cases, e.g. p = 2, the results can be improved slightly, but we
will not be concerned with this.

After that, (b) and (c) are consequences of the standard Sobolev em-
bedding theorem. A standard proof for the fractional cases we need is in
[Tay97], p. 22 ff.

�

5. Proofs

5.1. Proof of Theorem 2.1. Using invariance of the conformal structure
under the powers of F , we rewrite the difference Cx − Sx

hx(Chx) in a form
suitable for making estimates.

Iterating the invariance equation (3) we have

(8) Cx = Fx ◦ · · · ◦ Ffn−1x(Cfnx).

Note that, by (2), the mapping

Fn
x ≡ Fx ◦ · · · ◦ Ffn−1x : Cfnx → Cx

is given by

Fn
x (Cfnx) = (An

x)∗ ◦ Cfnx ◦An
x, where An

x =
1

det(Dfn
x )

Dfn
x .

When Ex is equipped with the metric given by Cx and Efnx is equipped
with the metric given by Cfnx, An

x : Ex → Efnx is an isometry. It follows
from (4) and (5) that

||(An
x)∗|| = ||An

x|| ≤
√
||C−1

fnx|| ·
√
||Cx||.

and hence

(9) ||Fn
x || ≤ ||(An

x)∗|| · ||An
x|| ≤ ||C−1

fnx|| · ||Cx||.

Considering (8) at the point hx, we have

Chx = Fhx ◦ · · · ◦ Ffn−1(hx)(Cfn(hx)).

Now we assume that h is adapted to the stable foliation of f so that f i(hx)
is sufficiently close to f i(x), and thus the space Ef i(hx) can be identified with
Ef ix. We have

(10) Sx
hx(Chx) = Sx

hx ◦ Fhx ◦
(
Sfx

f(hx)

)−1
◦ Sfx

f(hx) ◦ . . .

◦
(
Sfn−1x

fn−1(hx)

)−1
◦ Sfn−1x

fn−1(hx)
◦ Ffn−1(hx) ◦

(
Sfnx

fn(hx)

)−1
◦ Sfnx

fn(hx)

(
Cfn(hx)

)
.

We denote

F̃f ix = Sf ix
f i(hx)

◦ Ff i(hx) ◦
(
Sf i+1x

f i+1(hx)

)−1
: Cf i+1x → Cf ix.

and

(11) F̃ i
x = F̃x ◦ · · · ◦ F̃f i−1x.
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Now, we can write (10) as

(12) Sx
hx(Chx) = F̃x ◦ · · · ◦ F̃fn−1x ◦ Sfnx

fn(hx)

(
Cfn(hx)

)
.

Using (8) and (12), we rewrite the difference Cx − Sx
hx(Chx) by adding

and substracting appropriate terms.

Cx−Sx
hx(Chx) = Fx ◦ · · · ◦ Ffn−1x(Cfnx)− F̃x ◦ · · · ◦ F̃fn−1x ◦ Sfnx

fn(hx)(Cfn(hx))

=Fx ◦ · · · ◦ Ffn−1x(Cfnx)− F̃x ◦ Ffx ◦ · · · ◦ Ffn−1x(Cfnx)

+ F̃x ◦ Ffx ◦ · · · ◦ Ffn−1x(Cfnx)− F̃x ◦ · · · ◦ F̃fn−1x ◦ Sfnx
fn(hx)(Cfn(hx))

=(Fx − F̃x) ◦ Ffx ◦ · · · ◦ Ffn−1x(Cfnx)

+ F̃x ◦
(
Ffx ◦ · · · ◦ Ffn−1x(Cfnx)− F̃fx ◦ · · · ◦ F̃fn−1x ◦ Sfnx

fn(hx)Cfn(hx))
)

= · · ·

=
n−1∑
i=0

F̃x ◦ · · · ◦ F̃f i−1x ◦
(
Ff ix − F̃f ix

)
◦ Ff i+1x ◦ · · · ◦ Ffn−1x(Cfnx)

+ F̃x ◦ · · · ◦ F̃fn−1x

(
Cfnx − Sfnx

fn(hx)(Cfn(hx))
)

=
n−1∑
i=0

F̃ i
x ◦

(
Ff ix − F̃f ix

)
(Cf i+1x) + F̃n

x

(
Cfnx − Sfnx

fn(hx)(Cfn(hx))
)

.

Thus,

Cx − Sx
hx(Chx) =

n−1∑
i=0

F̃ i
x ◦

(
Ff ix − F̃f ix

)
(Cf i+1x)

+ F̃n
x

(
Cfnx − Sfnx

fn(hx)(Cfn(hx))
)

.

(13)

Now we proceed as in [dlLa]. First we estimate the general term of the
sum in (13). Using (9) we obtain

||F i
hx|| ≤ ||C−1

f i(hx)
|| · ||Chx||.

This can be viewed as an analog of cancellations in [NT98].

Note that F̃ i
x = Sx

hx◦F i
hx◦

(
Sf ix

f i(hx)

)−1
. Since h is C0-close to the identity,

(14) ||F̃ i
x|| ≤ K1 · ||C−1

f i(hx)
|| · ||Chx||.

Since the restriction of the derivative of f to E is Hölder continuous, F is
also Hölder continuous. Hence,

||Ff ix − F̃f ix|| = ||Ff ix − Sf ix
f i(hx)

◦ Ff i(hx) ◦
(
Sf i+1x

f i+1(hx)

)−1
||

≤ K2 · dist
(
f ix, f i(hx)

)α ≤ K2 ·
(
λi

s · dist(x, hx)
)α

,
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where λs is the contraction coefficient in (1) and α > 0 is the Hölder expo-
nent.

Therefore, we can estimate the general term in (13) as follows

||F̃ i
x ◦

(
Ff ix − F̃f ix

)
(Cf i+1x)||

≤ K3 · ||C−1
f i(hx)

|| · ||Chx|| · ||Cf i+1x|| · λiα
s · dist(x, hx)α.

Now we estimate the Lp/(d+1) norm of the general term in (13). Let

Ti(x) = F̃ i
x ◦

(
Ff ix − F̃f ix

)
(Cf i+1x).

Since ||C|| ∈ Lp, the equations (6) imply that ||C−1|| ∈ Lp/(d−1). Thus,
using the Hölder inequality, we obtain

||Ti||Lp/(d+1) ≤ K3 · λiα
s · ||h− Id||αL∞

×
(∫

M
(||C−1

f i(hx)
|| · ||Chx|| · ||Cf i+1x||)p/(d+1)

)(d+1)/p

≤ K3λ
iα
s · ||h− Id||αL∞ · ||C−1

f i(h(·))||Lp/(d−1) · ||Ch(·)||Lp · ||Cf i+1(·)||Lp

(15)

Since f preserves the volume,

||Cf i+1(·)||Lp = ||C||Lp ,

and since h is a C1-close to the identity diffeomorphism,

(16) ||Ch(·)||Lp ≤ K4 · ||C||Lp ,

||C−1
f i(h(·))||Lp/(d−1) = ||C−1

h(·)||Lp/(d−1) ≤ K4 · ||C−1||Lp/(d−1) .

Hence we obtain that if C ∈ Lp, the general term in (13) is bounded in
Lp/(d+1) by

||Ti||Lp/(d+1) ≤ K5 · ||h− Id||αL∞ · ||C||2Lp · ||C−1||Lp/(d−1) · λiα
s .

Thus,

||Cx−Sx
hx(Chx)||Lp/(d+1)

≤
n−1∑
i=0

||Ti||Lp/(d+1) + ||F̃n
x (Cfnx − Sfnx

fn(hx)(Cfn(hx)))||Lp/(d+1)

≤ K · ||h− Id||αL∞ + ||F̃n
x (Cfnx − Sfnx

fn(hx)(Cfn(hx)))||Lp/(d+1) .

Now we show that the last term in (13) tends to 0 as n → ∞. Let us
define linear operators Rn by

(Rn(C))x = F̃n
x

(
Cfnx − Sfnx

fn(hx)(Cfn(hx))
)

.

Then by (14),

||(Rn(C))x|| ≤ K1 · ||C−1
fn(hx)|| · ||Chx|| · ||Cfnx − Sfnx

fn(hx)(Cfn(hx))||.
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Since h is C1-close to the identity, the norms of the operators Sfnx
fn(hx) are

uniformly bounded in x and n. Now, using (16) and the fact that f is
volume-preserving, we obtain:

||Cfnx − Sfnx
fn(hx)(Cfn(hx))||Lp ≤ ||Cfnx||Lp + K6 · ||Cfn(hx)||Lp

≤ (1 + K6 ·K4) · ||C||Lp .

Using Hölder inequality as in (15) it is easy to see that the norms of the
linear operators Rn from Lp to Lp/(d+1) are bounded uniformly in n. Note
that ||(Rn(C))x|| tends to 0 uniformly on M for any continuous structure
C. Since the continuous structures are dense in Lp, we conclude that
||(Rn(C))||Lp/(d+1) → 0 as n →∞ for any Lp structure C.

Thus we conclude that

||Cx − Sx
hx(Chx)||Lp/(d+1) ≤ K · ||h− Id||αL∞ ,

and hence C ∈ L
p

d+1
,(s)

α .

A similar argument shows that C ∈ L
p

d+1
,(u)

α . Then Proposition 4.1 implies
that C ∈ L

p/(d+1)
α . This completes the proof of Theorem 2.1.

5.2. Proof of Theorem 2.2. The argument here is similar to the proof
of Theorem 2.1. We will indicate modifications required for the flow case.

Instead of the stable and unstable foliations we consider the strong stable
and strong unstable foliations. We say that a conformal structure C is in
L

p,(s)
α (in L

p,(u)
α ) if the condition (7) is satisfied for any diffeomorphism h

adapted to the strong stable (unstable) foliation. The argument in the proof

of Theorem 2.1 shows that C ∈ L
p

d+1
,(s)

α ∩ L
p

d+1
,(u)

α .
We can also define the space L

p,(o)
α by considering the diffeomorphisms

adapted to the orbit foliation. For this case, there exists a natural identifi-
cation of conformal structures on Ex and on Eh(x) given by the flow. We use
this identification in place of Sx

h(x) in the condition (7). With this definition,
the difference in (7) is identically 0 for any invariant conformal structure,
and the condition is trivially satisfied. Thus,

C ∈ L
p

d+1
,(s)

α ∩ L
p

d+1
,(u)

α ∩ L
p

d+1
,(o)

α .

Now, an analog of Proposition 4.1 shows that C ∈ L
p

d+1
α .

5.3. Proof of Corollaries 2.1 and 2.2. Since the conformal structure C
is in Lp, Theorem 2.1 (2.2) together with Proposition 4.2(b) imply that

C ∈ Lp/(d+1)
α ⊂ Lq−ε

for any ε > 0, where 1
q = d+1

p − α
m . Calculating q we obtain

q = p · m

m(d + 1)− αp
> p for p >

d ·m
α
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Since the factor m
m(d+1)−αp increases with p, we can apply the theorem re-

peatedly until we obtain that C ∈ L
q
α with q ≥ m

α . Then it follows from
Proposition 4.2(c) that the conformal structure C is continuous.

�
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