Math 311M     Fall 2017   Schedule

Lec. Date Section Topic
  1   8/21     1.1     Introduction.  Division Theorem.  
  2   8/23     1.1     The greatest common divisor.  
  3   8/25     1.1     Euclidean Algorithm.  Relatively prime numbers.  
  4   8/28     1.2     Mathematical Induction.     Worksheet   pdf  
  5   8/30     1.2     Mathematical Induction.       Worksheet   pdf  
  6   9/1     1.2     Recursively defined sequences.  Strong induction.
  -   9/4     -     Labor Day - No Classes  
  7   9/6     1.3     Prime numbers.  
  8   9/8     1.3     Unique Factorization Theorem.  
  9   9/11     1.4     Congruence classes.  
  10   9/13     1.4     Invertible elements and zero-divisors in Zn.  
  11   9/15     1.4     Worksheet   pdf  
  12   9/18     1.5     Solving linear congruences.  
  13   9/20     1.5     Chinese Remainder Theorem.  
  14   9/22     1.6     The order of a mod n.
  15   9/25     1.6     Fermat’s Theorem.  Euler’s phi-function.  
  16   9/27     1.6     Euler’s phi-function.  Euler’s Theorem.  
  17   9/29     1.6     Public key code.
  18   10/2         Exam 1 covering Chapter 1.   Study guide  pdf
  19   10/4     2.1     Sets.  
  20   10/6     2.1     Sets.   Worksheet   pdf
  21   10/9     2.2     Functions: surjective, injective, bijective.  
  22   10/11     2.2     Composition. The inverse function.  
  23   10/13     2.2     Cardinality of sets.
  24   10/16         Cardinality of sets.   Optional reading  pdf     
  25   10/18     2.3     Relations: examples and properties.  
  26   10/20    
  2.3  
  Presentation by John Meier   PSU library info
  More on relations. Partial order.
  27   10/23     2.3  
  3.1
  Equivalence relation.  
  Propositions. Negation.
  28   10/25     3.1     Conjunction, disjunction, implication, equivalence.  
  29   10/27     3.2     Quantifiers.
  30   10/30         Sections 3.1 and 3.2  Worksheet   pdf  
  31   11/1     3.3     Some proof strategies.  
  32   11/3        Chapter 2  Worksheet   pdf  
  33   11/6         Exam 2 covering Chapters 2, 3.   Study guide  pdf  
  34   11/8     4.3     Groups: definition, examples, and non-examples.  
  Worksheet  pdf  
  35   11/10     4.3     More examples of groups: matrices and symmetries. 
  36   11/13     4.3
  4.1  
  More on Symmetries.
  Permutations.  
  37   11/15     4.2     Order and sign of a permutation.  
  38   11/17     4.2     Transpositions.   Subgroups.   Project is due!
11/19-25   Thanksgiving Holiday - no classes
  39   11/27     5.1     The order of an element.  
  40   11/29     5.1,3     Cyclic groups.   Worksheet  pdf  
  41   12/1     5.3     Group isomorphism.
  42   12/4     4.4     Rings and fields.  
  43   12/6         Subgroups, rings, and fields.   Worksheet  pdf  
  44   12/8       Groups.   Worksheet  pdf  

The Final Exam will be on Monday, Dec. 11, 10:10 a.m. - noon in 105 Wagner.
Study guide   pdf