Math 403H     Fall 2021   Schedule

Lec. Date Chapter Topic
  1   8/23       2     Introduction.  Countable and uncountable sets.  
  2   8/25       2     Cantor set and Cantor function.  
  3   8/27     1, 2   Monotone functions.  More on Cantor function.  
  4   8/30       3     Metric spaces: definition and examples.  
  5   9/1       3     More on metrics.  Bounded sets.   
  6   9/3       3     Vector spaces review  pdf.   Normed vector spaces.  
  -   9/6       -     Labor Day - No Classes  
  7   9/8       3     Limits in metric spaces.  
  8   9/10       3     Cauchy sequences. "Coordinatewise" convergence.  
  9   9/13       4     Open sets.  
  10   9/15       4     Closed sets.  
  11   9/17       4     Interior and closure. Dense sets.  
  12   9/20       5     Continuous functions.  
  13   9/22       5     Continuous functions.  
  14   9/24       5     Homeomorphisms.  
  15   9/27       5     Isometries. Distance to a set.  
  16   9/29     5, 6     Continuous real-valued functions.  Connectedness.
  17   10/1       6     Connectedness.
  18   10/4           Problems   pdf  
  19   10/6           Exam 1  covering Chapters 2-5.  
  20   10/8      
    7  
  Review: Sequences in [a,b] and continuous functions on [a,b].  
  Boundedness and total boundedness.
  21   10/11       7   Total boundedness.
  22   10/13       7     Completeness.
  23   10/15       7     Completions.
  24   10/18       7     Nested closed sets. Contractions.  
  25   10/20       8     Compactness.  
  26   10/22       8     Compactness via open covers.  
  27   10/25       8     Continuous functions on compact metric spaces.  
  28   10/27       8     Uniform continuity.  
  29   10/29       8     Properties of uniformly continuous functions.  
  30   11/1      
    9
  Hölder continuous functions.
  Open dense sets.
  31   11/3       9     Nowhere dense sets. The Baire Category Theorem. 
  32   11/5       9     Discontinuities.  
  33   11/8           Problems   pdf
  34   11/10           Exam 2  covering Chapters 6-8.
  35   11/12       10     Pointwise convergence and uniform convergence.  
  36   11/15       10     Consequences of uniform convergence.  
  37   11/17       10     Spaces of bounded and continuous functions. Weierstrass M-test. 
  38   11/19       10     Power series.  
  11/21-27         Thanksgiving break.  
  39   11/29       11     Equicontinuity.  Equicontinuity and uniform convergence.  
  40   12/1       11     The Arzelà-Ascoli Theorem.
  41   12/3       12     Subalgebras of C(X).  
  42   12/6       12     The Stone-Weierstrass Theorem.  
  43   12/8       12     Discussion and examples.
  44   12/10           Problems   pdf  

  Final Exam:  December 12,  2-5 p.m. via Canvas.