Math 421   Fall 2015   Schedule

Lec. Date Chapter Topic
  1   8/24     1     Complex numbers and operations.  
  2   8/26     1     Roots of unity, conjugation, modulus, inequalities.  
  3   8/28     2     Complex-valued functions; regions in the complex plane.  
  4   8/31     2     Circles and lines; the Riemann sphere.  
  5   9/2     2     Möbius transformations and circlines.  
  6   9/4     3     Open and closed sets in the complex plane.  
  -   9/7     -     Labor Day - No Classes  
  7   9/9     3     Limit points, closure, bounded sets, compact sets.  
  8   9/11     3     Convexity, connectedness, polygonal connectedness.  
  9   9/14     3     Sequences of complex numbers.  
  10   9/16     3     Sequences. Limits of functions and continuity.  
  11   9/18     3, 4     Continuous functions on compact sets.   Curves.  
  12   9/21     4     Paths and contours.  
  13   9/23     5     Differentiability and Cauchy-Reimann equations.  
  14   9/25     5     Holomorphic functions.  
  15   9/28     5     Holomorphic functions. Zeros of functions.  
  16   9/30         Problems from Chapters 1-4  
  17   10/2         Exam 1  covering Chapters 1-4.   Study guide   pdf   
  18   10/5     6     Complex series.  
  19   10/7     6     Power series.  
  20   10/9     6     Differentiating power series.
  21   10/12     7     Exponential, trigonometric and hyperbolic functions.  
  22   10/14     7     Exponential, trigonometric and hyperbolic functions.  
  23   10/16     7     Hw discussion.  Argument, logarithm, and powers.
  24   10/19     7,8     Holomorphic branches of logarithm and nth root.
  Conformal mappings.  
  25   10/21     8     Conformal mappings.  
  26   10/23     8     Hw discussion.  Conformal mappings.
  27   10/26         Riemann Mapping Theorem -- a discussion.  
  28   10/28     10     Integration along path.  
  29   10/30     10     Fundamental Theorem of Calculus and examples.  
  30   11/2     10,11     Estimation theorem. Cauchy's Theorem for a triangle.  
  31   11/4         Problems from Chapters 5-8.  
  32   11/6         Exam 2  covering Chapters 5-8.   Study guide   pdf   
  33   11/9     11     Antiderivative and Cauchy's theorems for a convex region.  
  34   11/11     12     Cauchy's and Antiderivative theorems for a simply connected region.  
  35   11/13      
  13  
  Cauchy's Theorem for a multiply connected region.
  Cauchy's Integral formula.
  36   11/16     13     Liouville's Theorem.  The Fundamental Theorem of Algebra.  
  37   11/18     13     Cauchy's formula for the derivatives.  
  38   11/20     14     Taylor's Theorem.
  39   11/30     15     Zeros of holomorphic functions.  
  40   12/2     15, 17     Identity Theorem.  Laurent series.  
  41   12/4     17     Laurent's Theorem.  Estimates for the coefficients.  Singularities.
  42   12/7     17     Classification of isolated singularities.  
  43   12/9     18     Residues. Cauchy's residue theorem.  
  44   12/11         Review

Final Exam: Tuesday, December 15, 10:10 a.m. - noon, in 201 Osmond.   Study guide   pdf