Math 429   Spring 2021   Schedule

Lec. Date Section Topic
    1/18               Martin Luther King Day - no classes        
  1   1/20      1, 5   Introduction.  Metric spaces. Metrics on R and Rn
  2   1/22        5   Metric spaces: more examples.  
  3   1/25        5     Product spaces.  Continuous functions on R and on metric spaces.  
  4   1/27        5     Continuous functions from a metric space to R.  
  5   1/29        5     Continuous functions on metric spaces.  
  6   2/1        5     Bounded sets. Open balls in metric spaces.  
  7   2/3        5     Open sets in metric spaces.  
  8   2/5      5, 6   Continuity in terms of open sets.  Closed sets.
  9   2/8       6     The closure of a set.  
  10   2/10        6     The interior and the boundary of a set.  
  11   2/12        6   Convergence in metric spaces.
  12   2/15        6     Equivalent metrics.  
  13   2/17      6, 7     Homeomorphisms and isometries.  Topological spaces: motivation.  
  14   2/19        7   Topological spaces: definition and examples.
  15   2/22         Review.  
  16   2/24           Exam 1  covering Chapters 5 and 6.  
  17   2/26        8     Continuous maps of topological spaces.  
  18   3/1      8, 9     Bases of topology.  Closed sets in topological spaces.  
  19   3/3        9     The closure of a set and dense sets in a topological space.  
  20   3/5        9     The interior and the boundary of a set in a topological space.  
  21   3/8       10     Subspaces of topological spaces.  
  22   3/10       10     Products of topological spaces.  
  23   3/12       10   Topological products and continuity.
  24   3/15      11+     Separation axioms.  
  25   3/17     11+, 12   Separation axioms.  Connected spaces.
  26   3/19       12   Connectedness.
  27   3/22       12     Connectedness and path-connectedness.  
  28   3/24     12, 13       Path-connectedness.  Compactness: motivation and definition.  
  29   3/26       13   Compact and noncompact sets.
  30   3/29         Review.  
  31   3/31           Exam 2  covering Chapters 7-12.    
  32   4/2       13   Properties of compact sets.
  33   4/5       13   Compactness of the product. Continuous maps on compact spaces.  
    4/7               Wellness day - no classes  
  34   4/9       14   Sequential compactness in metric spaces.
  35   4/12       15     Quotient spaces: introduction and definitions.  
  36   4/14       15     Quotient spaces and quotient maps. The circle.  
  37   4/16       15   The torus, Klein bottle, and real projective plane.
  38   4/19         The fundamental group: definition.  
  39   4/21           The fundamental group: discussion. Simply connected spaces.  
  40   4/23       The fundamental group: sphere, circle, and real projective plane.
  41   4/26         More on the fundamental group.  
  42   4/28           Review.  
  43   4/30       Q & A