MA 497B Final Exam Review Sheet

Each ticket will contain a theoretical question from the list below and a problem. Questions on these topics may also be asked after you answer the questions on the ticket.

• Circle rotations

- Rational rotations: periods of points
- Irrational rotations:
 - Minimality: statement and proof
 - Equidistribution: statement
 - Distribution of first digits of powers: statement and connection to circle rotations

• Contractions

- Definition
- Contractions of an interval: statements and proofs
- Contraction Principle: statement and proof
- Contractions in \mathbb{R}^k : statement

• Periodic and fixed points

- Definitions;
- Attracting fixed points: definition,
 a sufficient condition for a fixed point of an interval map: statement and proof

• Non-decreasing continuous interval maps:

- Fixed points: statement and proof
- Orbits of points: statement and proof

• Autonomous differential equations, $\dot{x} = g(x)$

- Lipschitz functions: definition and examples
- Behavior of the solutions: statement and proof
- Existence and uniqueness of solutions: statement and *proof*, an example of non-uniqueness

• Linear maps of the plane

- "Models"
- Invariant curves and orbits of points for each "model"
- Conjugacy of real 2×2 matrices to the models
- Topological conjugacy of dynamical systems
- Linear differential equations in the plane and matrix exponential

• Homeomorphisms

- Definition
- Continuity of the inverse for a continuous bijection: two proofs

• Recurrence

- Measurable sets and Lebesgue measure an overview
- Measure-preserving map: definition
- Poincare Recurrence Theorem: statement and proof
- Poincare Recurrence a topological version: statement and proof

Topological transitivity, minimality, and topological mixing

- Definitions and examples
- Minimality and closed invariant sets: statement and proof
- Criteria for topological transitivity: four equivalent statements and proof of their equivalence
- Meaning of topological mixing

• Times-m map of the circle

- Fixed and periodic points
- Writing numbers in base m
- Constructing a point with dense orbit
- Topological mixing

• Sequence spaces Ω_m and Ω_m^+ , and the shift map

- Definitions
- Metrics on Ω_m and Ω_m^+ , and open balls in these metrics
- The spaces are compact and do not have isolated points, the shift is continuous
- Fixed points and periodic points
- Topological mixing with proof
- Symbolic dynamical system: definition and examples

• Expanding maps of the circle

- Definition of an expanding map
- Definitions of lift and degree for a circle map
- For expanding circle maps of degree 2:
 - Fixed points
 - Coding and semiconjugacy with the shift
 - Definition of semiconjugacy for two dynamical systems
 - \circ Topological conjugacy for expanding circle maps of degree 2 (or m) and implications for periodic points, transitivity, etc.

ullet Linear maps of the torus \mathbb{T}^2

- The torus
- Invertible linear maps (automorphisms) of the torus
- Hyperbolic toral automorphisms
 - An example, and the action on the fundamental domain (unit square)
 - The eigenvalues are irrational and eigendirections have irrational slopes
 - A point is periodic if and only if its coordinates are rational, with proof
 - The number of periodic points of period n: statement and an outline of a proof; a formula for the case if eigenvalues $\lambda > 1$ and $1/\lambda$
 - Topological mixing, with *proof*

• Topological entropy

- Definition and three quantities that can be used in the definition (N, S, D)
- Topological entropy of isometries and contractions is zero, with *proof*
- Entropy of E_m is $\log m$, with proof
- If two metrics generate the same topology, the entropy is the same, with proof
- Topological entropy is an invariant of topological conjugacy, with proof
- Properties of topological entropy
- Topological entropy of a hyperbolic toral automorphism

Chaos and Sensitive dependence on the initial conditions

- Definitions
- Examples
- Chaotic maps exhibit sensitive dependence
- Topological mixing implies sensitive dependence, with *proof*