Math 497B   Fall 2014   Schedule

Lec. Date Topic
  1   8/25     Dynamics in nature: populations.  
  2   8/27   Dynamics in mathematics and games.  
  3   8/29   First digits of powers and circle rotations.  
    9/1   - Labor Day -  
  4   9/3   Equidistribution on the circle.
  Discrete-time dynamical systems.
  5   9/5   Fixed and periodic points. Basic examples.  
  6   9/8   Contractions in one dimension.  
  7   9/10   The Contraction Mapping Principle.  
  8   9/12   An application to Fibonacci numbers.
  Attracting fixed points.  
  9   9/15   Non-decreasing maps of an interval.  
  10   9/17   Autonomous differential equations.  
  11   9/19   Existence and uniqueness of solutions.  
  12   9/22   Linear maps in the plane.  
  13   9/24   Linear maps in the plane.  
  14   9/26   Topological conjugacy.
  Linear differential equations.  
  15   9/29   Linear differential equations.   Flows.
  16   10/1   Fractals.
  17   10/3   Fractals in complex dynamics.
    10/6   Midterm exam: 497A,   10:10 a.m. - 12:05 p.m.
    10/7   Midterm exam: 497C,   10:10 a.m. - 12:05 p.m.
    10/8   Midterm exam: 497B,   10:10 a.m. - 12:05 p.m.
  18   10/10   Homeomorphisms.
  19   10/13   Recurrence.
  20   10/15   Recurrence.
  21   10/17   Transitivity and minimality.
  22   10/20   The times-m map of the circle.
  23   10/22   The times-m map of the circle.
  Sequence spaces.
  24   10/24   Symbolic dynamical systems.
  25   10/27   Expanding maps of the circle.
  26   10/29   Coding.
  27   10/31   Toral automorphisms.
  28   11/3   Hyperbolic toral automorphisms.
  29   11/5   Periodic points of hyperbolic toral automorphisms.  
  30   11/7   Coding for a hyperbolic toral automorphism.
  31   11/10   Topological entropy: definition and examples.
  32   11/12   Topological entropy: properties.
  33   11/14   More on topological entropy.
  34   11/17   Topological mixing.
  35   11/19   Criteria for topological transitivity.
  36   11/21   Chaos. Sensitive dependence on initial conditions.
  37   12/1   Sensitive dependence, topological mixing, and chaos.  
  38   12/3   Topological entropy revisited.  
  39   12/5   Topological mixing, transitivity, and minimality revisited.