Math 502   Spring 2018   Schedule

Lec. Date Chapter
Section
Topic
  1   1/8     1: 1.1     Complex numbers and the complex plane.  
  2   1/10     1: 1.2, 1.3     Convergence.  Sets in the complex plane. Compactness.  
  3   1/12     1: 1.3, 2.1   Regions.  Continuous complex-valued functions.  
  -   1/15     -             Martin Luther King Day - no classes  
  4   1/17     1: 2.2     Complex differentiable functions.  
  5   1/19     1: 2.2     Complex differentiable functions.  
  6   1/22     1: 2.3       Series of complex numbers.  Convergence of power series.  
  7   1/24     1: 2.3       Uniform convergence.  Differentiation of power series.  
  8   1/26     1: 2.3       Complex exponential and trigonometric functions.  
  9   1/29     1: 2.4       Piecewise smooth curves.  Integration along curves.  
  10   1/31     1: 2.4       Integration along curves.  
  11   2/2     3: 6     Complex logarithm and powers.  
  12   2/5     2: 1    
  2: 2    
  Goursat's Theorem.
  Existence of a primitive and Cauchy Theorem in a convex region.  
  -   2/7     -               Classes cancelled due to winter storm.    
  13   2/9     3: 5       Integrals along homotopic curves.  
  14   2/12     3: 5       Simply connected regions and holomorphic functions in such regions.  
  Cauchy Theorem for multiply connected regions.
  15   2/14         Exam 1   Study guide   pdf
  16   2/16     2: 4       Cauchy integral formulas.  
  17   2/19     2: 4       Cauchy inequalities.  Liouville's Thm.  Fundamental Thm of Algebra.  
  18   2/21     2: 4       Power series representation of holomorphic functions.  The Identity Thm.  
  19   2/23     2: 4       Corollaries of the Identity Thm.  Maximum modulus principle.  
  20   2/26         Re f,  Im f,  and harmonic functions.  
  21   2/28     2: 5       Morera's Theorem. Sequences of holomorphic functions.
  22   2/30     2: 5       Symmetry principle and Schwarz reflection principle.  
   3/4-10                Spring Break
  23   3/12     3: 1       Singularities.  Zeros and poles.    
  24   3/14     3: 1, 2       Residues at poles.  Calculating residues.
  25   3/16     3: 2       The Residue Formula.  Contour integration and improper integrals.  
  26   3/19     3: 2       Contour integration and improper integrals.  
  27   3/21     3: 2   Contour integration and improper integrals.
  28   3/23       Laurent series.  
  29   3/26         Exam 2   Study guide   pdf  
  30   3/28     3: 3       More on singularities.  Casorati-Weierstrass theorem.
  31   3/30     3: 3       Riemann sphere.  Singularities in the extended complex plane.  
  32   4/2     3: 3    
  3: 4    
  Meromorphic functions in the extended complex plane.
  The Argument Principle.
  33   4/4     3: 4       Rouché’s Theorem.  Open Mapping Theorem.
  34   4/6     3: 6  
 
  Solving eg=f.  
  Holomorphic functions and angles between curves.  
  35   4/9     8: 1       Conformal equivalence.
  36   4/11     8: 1     Möbius (fractional linear) transformations.
  37   4/13     8: 1     Conformal equivalence: more examples.  
  38   4/17     8:  2   Schwarz Lemma.   Automorphisms of the unit disc.
  39   4/19     8:  2   Automorphisms of the unit disc and upper half-plane.
  40   4/20     8:  3     Riemann Mapping Theorem.  
  41   4/23     6:  1     The gamma function.  
  42   4/25     6: 2,  7: 1     Riemann zeta function - an overview.
  43   4/27       Problems   pdf  

 Final Exam:  Tuesday,  May 1,  10:10 a.m. - noon  in 106 McAllister.     Study guide