Math 503   Spring 2020   Schedule

Lec. Date Section Topic
  1   1/13     2.1     Normed spaces. Banach spaces. Norms on Rn.  
  2   1/15     2.1, A.6.2     Sequence spaces and inequalities.  
  3   1/17     2.1, A.6.2     Sequence spaces. Function spaces.
  -   1/20     -             Martin Luther King Day - no classes        
  4   1/22     2.2     Linear operators.  
  5   1/24     2.2, 2.3     More examples.  Finite-dimensional spaces.  
  6   1/27     2.4     Seminorms and Fréchet spaces.  
  7   1/29     2.5     Hahn-Banach extension theorem.  
  8   1/31     2.5
  2.6  
  Extension theorem for bounded linear functionals.  
  Separation of convex sets.  
  9   2/3     2.7     Dual spaces and weak convergence.  
  10   2/5     2.7
  3.1
  Weak-star convergence. 
  Bounded continuous functions.  
  11   2/7    
  3.1
  Extending a continuous function from a dense set.
  Pointwise convergence vs. uniform convergence.  
  12   2/10     3.2     Stone-Weierstrass approximation theorem.  
  13   2/12     3.3     Ascoli's compactness theorem.  
  14   2/14     3.4
  4.1
  Hölder continuous functions.
  The uniform boundedness principle.
  15   2/17     4.2     The open mapping theorem.  
  16   2/19     4.3     Examples. The closed graph theorem.  
  17   2/21     4.5     Compact operators.  
  18   2/24         Exam 1  covering Chapter 2 and 3.
  19   2/26     4.4, 4.5     Adjoint operators.  
  20   2/28     5.1     Hilbert spaces.  
  21   3/2     5.2     Orthogonal projections and orthogonal decomposition.  
  22   3/4     5.2
  5.3
  More examples.
  Continuous linear functionals on Hilbert spaces.  
  23   3/6     5.4, 5.5     Orthonormal sets.  
   3/8-14                Spring Break - no classes
  24   3/16     5.6     Positive definite operators.  
  25   3/18     5.7     Weak convergence in Hilbert spaces.
  26   3/20     5.7
  6.1
  An example (5.16)
  Operators of the form  I − compact:  a preview.
  27   3/23     6.1     Fredholm Theory.  
  28   3/25     6.1   Fredholm Theory.  
  29   3/27     6.2   Spectrum of a compact operator.  
  30   3/30     6.3     Self-adjoint and compact self-adjoint operators.  
  31   4/1       Exam 2  
  32   4/2     6.3
 
  Remarks.
  Some general properties of the resolvent set and spectrum.  
  33   4/6     8.1     Weak derivatives in R.  Examples.  
  34   4/8     8.1   Distributions and weak derivatives.  
  35   4/10     A.5, 8.2   Mollifications.  
  36   4/13     8.3     Sobolev Spaces.  
  37   4/15     8.3   Sobolev Spaces.  
  38   4/17     8.4-6   Results on Sobolev spaces.  
  39   4/20     8.6     Embedding theorems.  
  40   4/22     8.8
  9.1
  Differentiability properties of Sobolev functions.
  Elliptic equations. Weak solutions.  
  41   4/24     9.1   Elliptic equations.  
  42   4/27     9.1     Elliptic equations.  
  43   4/29       Problems.  
  44   5/1       Problems.